cho : -3;-5;-6;-7;8;11;12. Hãy sắp xếp các số trên sao cho có một số đặt ở tâm vòng tròn,các số còn lại nằm trên đường tròn đó và cứ 3 số bất kì trong các số trên đều nằm trên một đường thẳng mà tổng của chúng bằng nhau và bằng 0 .
cho A = 1 + 3 + 3^2 + 3^3 + ..... + 3^11
chứng tỏ rằng a chia hết cho 14
cho B = 3^! + 3^3 + 3^5 + ...... +3^1991
chứng tỏ rằng B chia hết cho 13 , cho 41
Cho B=3+3^3+3^3+...3^120 CMR
a)B chia hết cho 3
B)B chia hết cho 4
c)B chia hết cho 13
a: \(B=3\left(1+3+3^2+...+3^{120}\right)⋮3\)
b: \(B=4\left(3+...+3^{119}\right)⋮4\)
a) Cho A = 2+2^2+2^3+...+2^180. Chứng tỏ rằng A chia hết cho 3,cho 7, cho 15
b) Cho B = 3+3^3+3^5+...+3^1991. Chứng tỏ rằng B chia hết cho 13,cho 41
câu hỏi tương tự
cứ di chuột vào câu hỏi ế
cho A = 1+3+3^2 + 3^3 + .....+ 3^11 chứng tỏ a chia hết cho 14
cho b = 3^1 + 3^3 + 3^4 +.... + 3^1991 chứng tỏ rằng B chia hết cho 13 , 41
Bài 1:
A=2^1+2^2+2^3+2^4+...
B=3^1+3^2+3^+3^4+...
C=5^1+5^2+5^3+5^4+...
Bài 2:
+ 2^2019 chia hết cho 3 và cho 7
+ 3^2010 chia hết cho 4 và cho 13
+ 5^2010 chia hết cho 6 và cho 31
Bài 1:
$A=2^1+2^2+2^3+2^4$
$2A=2^2+2^3+2^4+2^5$
$\Rightarrow 2A-A=2^5-2^1$
$\Rightarrow A=2^5-1=32-1=31$
----------------------------
$B=3^1+3^2+3^3+3^4$
$3B=3^2+3^3+3^4+3^5$
$\Rightarrow 3B-B = 3^5-3$
$\Rightarrow 2B = 3^5-3\Rightarrow B = \frac{3^5-3}{2}$
--------------------------
$C=5^1+5^2+5^3+5^4$
$5C=5^2+5^3+5^4+5^5$
$\Rightarrow 5C-C=5^5-5$
$\Rightarrow C=\frac{5^5-5}{4}$
Bài 2: Sai đề bạn nhé. Bạn xem lại.
cho C = 3^1+3^2+3^3+...+3^100. chứng minh C chia hét cho 4; cho 10 ; cho 40 nhưng không chia hết cho 13.
* ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\) có \(100\) số hạng
và \(100⋮4\) và \(100⋮̸3\)
ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)
\(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\) (vì \(100⋮4\) )
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+2^{97}\left(1+3+3^2+3^3\right)\)
\(=3\left(1+3+9+27\right)+3^5\left(1+3+9+27\right)+...+2^{97}\left(1+3+9+27\right)\)
\(=3.40+3^5.40+...+3^{97}.40=40.\left(3+3^5+...+3^{97}\right)⋮40;10;4\)
vậy \(C\) chia hết cho \(40;10và4\) (1)
ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)
\(=3^1+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\) (vì \(100⋮̸3\) )
\(=3+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+2^{98}\left(1+3+3^2\right)\)
\(=3+3^2\left(1+3+9\right)+3^5\left(1+3+9\right)+...+2^{98}\left(1+3+9\right)\)
\(=3+3^2.13+3^5.13+...+3^{98}.13=3+13.\left(3^2+3^5+...+3^{98}\right)\)
ta có : \(13.\left(3^2+3^5+...+3^{98}\right)⋮13\) nhưng \(3⋮̸13\)
\(\Rightarrow\) \(C\) không chia hết cho \(13\) và \(3< 13\) \(\Rightarrow\) \(3\) là số dư khi chia \(C\) cho \(13\) (2)
từ (1) và (2) \(\Rightarrow\) (ĐPCM)
cho A = 1+3+3^2 + 3^3 + .....+ 3^11
chứng tỏ a chia hế cho 14
cho b = 3^1 + 3^3 + 3^4 +.... + 3^1991
chứng tỏ rằng B chia hết cho 13 , 41
Cho D=3²+3⁴+3⁶+...+3¹²⁰.Chứng minh rằng: a)D chia hết cho 3 b)D chia hết cho 91
a: \(D=3^2+3^4+...+3^{120}\)
\(=3\cdot3+3\cdot3^3+...+3\cdot3^{119}\)
\(=3\left(3+3^3+...+3^{119}\right)⋮3\)
b: \(D=3^2+3^4+3^6+...+3^{120}\)
\(=3^2+3^2\cdot3^2+3^2\cdot3^4+...+3^2\cdot3^{118}\)
\(=3^2\left(1+3^2+3^4+...+3^{114}+3^{116}+3^{118}\right)\)
\(=9\cdot\left[\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{114}\left(1+3^2+3^4\right)\right]\)
\(=9\cdot91\left[1+3^6+...+3^{114}\right]⋮91\)
a; ( 2+2^2+2^3+........+2^60) chia hết cho 3; 7; 15
b; (1+3+3^2+3^3+......+3^1991) chia hết cho 13; 41
c; ( 3+3^2+3^3+........+3^1998) chia hết cho 12; 39
Cho a thuộcZ CM : a^3- 19a chia hết cho 6
Cho A = 1 + 3 + 3^2 + ...+ 3^21 + 3^22 + 3^ 23 .CM
a) A chia hết cho 13
b) A chía hết cho 40