Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Không Tên
Xem chi tiết
Không Tên
Xem chi tiết
Không Tên
Xem chi tiết
Không Tên
Xem chi tiết
Kiệt Nguyễn
21 tháng 7 2020 lúc 20:58

Theo giả thiết, ta có: \(a^2b^2+b^2c^2+c^2a^2=a^2b^2c^2\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)

Áp dụng BĐT AM - GM cho 5 số, ta được: \(\hept{\begin{cases}a.a.a.b.b\le\frac{a^5+a^5+a^5+b^5+b^5}{5}=\frac{3a^5+2b^5}{5}\\b.b.b.a.a\le\frac{b^5+b^5+b^5+a^5+a^5}{5}=\frac{3b^5+2a^5}{5}\end{cases}}\)

\(\Rightarrow\frac{5\left(a^5+b^5\right)}{5}\ge a^2b^2\left(a+b\right)\)hay \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

\(\Rightarrow\frac{1}{\sqrt{a^5+b^5}}\le\frac{1}{ab\sqrt{a+b}}\)(1) .

Tương tự, ta có: \(\frac{1}{\sqrt{b^5+c^5}}\le\frac{1}{bc\sqrt{b+c}}\)(2); \(\frac{1}{\sqrt{c^5+a^5}}\le\frac{1}{ca\sqrt{c+a}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(VT=\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\)()

Xét \(\left(\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\right)^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}\right)\)\(=\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}\Rightarrow\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)(2)

Từ (1) và (2) suy ra \(\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)(đpcm)

Đẳng thức xảy ra khi \(a=b=c=\sqrt{3}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
Xem chi tiết
văn dũng
1 tháng 4 2020 lúc 10:52

mình không biết dù là tiêng việt lớp1

chúc bạn học giỏi

chúc bạn nhe

bạn CTV

Khách vãng lai đã xóa
Nguyễn Trung Hải
1 tháng 4 2020 lúc 11:05

ni ả ní

Khách vãng lai đã xóa
nguyen thanh an
4 tháng 4 2020 lúc 14:26

wdf  tiếng việt lớp 1 a 

Khách vãng lai đã xóa
Nghiêm Thị Nhân Đức
Xem chi tiết
Copxki Minh
2 tháng 12 2020 lúc 22:25

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

Khách vãng lai đã xóa
tthnew
Xem chi tiết
Trần Thanh Phương
Xem chi tiết
Trần Thanh Phương
27 tháng 7 2019 lúc 10:51

Haiz giải ra rồi

Ta có : \(VT=\Sigma\left(\frac{a^2-bc}{2ka^2+k^2b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(\frac{2k\left(a^2-bc\right)}{2ka^2+k^2b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(\frac{2ka^2-2kbc}{2ka^2+k^2b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(\frac{2ka^2+k^2b^2+c^2+2ka^2-2kbc-2ka^2-k^2b^2-c^2}{2ka^2+k^2b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(1-\frac{2kbc-2ka^2+2ka^2+k^2b^2+c^2}{2ka^2+k^2b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(1-\frac{k^2b^2+2kbc+c^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(1-\frac{\left(kb+c\right)^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge0\)

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT=\Sigma\left(1-\frac{\left(kb+c\right)^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge\Sigma\left[1-\left(\frac{k^2b^2}{k^2b^2+ka^2}+\frac{c^2}{ka^2+c^2}\right)\right]\)

\(=3-\left(\frac{k^2b^2+ka^2}{k^2b^2+ka^2}+\frac{ka^2+c^2}{ka^2+c^2}+\frac{k^2b^2+c^2}{k^2b^2+c^2}\right)=3-3=0\)( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=b=c\\k>0\end{matrix}\right.\)

Nguyễn Quang Định
27 tháng 7 2019 lúc 15:20

Ta có: \(1-\frac{2k\left(a^2-bc\right)}{2ka^2+k^2b^2+c^2}=\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}\)

Ta có thể viết lại bất đẳng thức thành

\(\sum\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}\le3\)

Sử dụng BĐT Cauchy-Schwarz, ta có:

\(\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=\frac{\left(kb+c\right)^2}{k\left(a^2+kb^2\right)+c^2+ka^2}\le\frac{kb^2}{a^2+kb^2}+\frac{c^2}{c^2+kc^2}\)

Tương tự rồi cộng lại, ta có điều phải chứng minh. Đẳng thức xảy ra khi \(a=b=c\), hoặc \(a=\frac{b}{k}=\frac{c}{k^2}\), hoặc \(b=\frac{c}{k}=\frac{a}{k^2}\), hoặc \(c=\frac{a}{k}=\frac{b}{k^{^2}}\)

Hoặc ta có thể làm như sau.

\(\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=\frac{kb^2}{a^2+kb^2}+\frac{c^2}{c^2+kc^2}-\frac{k\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+kc^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)

Ta có đẳng thức sau:

\(\sum\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=3-p\sum\frac{\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+ka^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)

\(\sum\frac{a^2-bc}{2ka^2+k^2b^2+c^2}=\frac{1}{2}\sum\frac{\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+ka^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)

Do đó, bất đẳng thức ban đầu tương đương với

\(\sum\frac{\left(b^2+kc^2\right)\left(a^2-bc\right)^2\left(kb-c\right)^2}{2ka^2+k^2b^2+c^2}\ge0\)

Trần Thanh Phương
26 tháng 7 2019 lúc 15:30

tth Akai Haruma Ace Legona Nguyễn Việt Lâm

Lê Minh Đức
Xem chi tiết
Akai Haruma
9 tháng 10 2017 lúc 17:28

Ta có \(a^2b^2+b^2c^2+c^2a^2\geq a^2b^2c^2\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 1\)

BĐT cần chứng minh tương đương với \(\frac{\frac{1}{c^3}}{\frac{1}{a^2}+\frac{1}{b^2}}+\frac{\frac{1}{b^3}}{\frac{1}{a^2}+\frac{1}{c^2}}+\frac{\frac{1}{a^3}}{\frac{1}{b^2}+\frac{1}{c^2}}\geq \frac{\sqrt{3}}{2}\)

Đặt \((\frac{1}{a},\frac{1}{b},\frac{1}{c})=(x,y,z)\). Bài toán trở thành: 

Cho \(x,y,z>0|x^2+y^2+z^2\geq 1\). CMR \(P=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\geq \frac{\sqrt{3}}{2}\)

Lời giải:

 Áp dụng BĐT Cauchy -Schwarz:

\(P=\frac{x^4}{xy^2+xz^2}+\frac{y^4}{yz^2+yx^2}+\frac{z^4}{zx^2+zy^2}\geq \frac{(x^2+y^2+^2)^2}{x^2(y+z)+y^2(x+z)+z^2(x+y)}\) (1)

Không mất tính tổng quát, giả sử \(x\geq y\geq z\Rightarrow x^2\geq y^2\geq z^2\) 

Và \(y+z\leq z+x\leq x+y\). Khi đó, áp dụng BĐT Chebyshev: 

\(3[x^2(y+z)+y^2(x+z)+z^2(x+y)]\leq (x^2+y^2+z^2)(y+z+x+z+x+y)\)

\(\Leftrightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)(x+y+z)}{3}\)

Theo hệ quả của BĐT Am-Gm thì: \((x+y+z)^2\leq 3(x^2+y^2+z^2)\Rightarrow x+y+z\leq \sqrt{3(x^2+y^2+z^2)}\)

\(\Rightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}{3}\) (2)

Từ (1),(2) suy ra \(P\geq \frac{3(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{3(x^2+y^2+z^2)}}{2}\geq \frac{\sqrt{3}}{2}\)

Ta có đpcm

Dáu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow a=b=c=\sqrt{3}\)

Kiệt Nguyễn
5 tháng 5 2020 lúc 12:58

Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)

Khi đó giả thiết được viết lại là \(x^2+y^2+z^2\ge1\)và ta cần chứng minh \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{\sqrt{3}}{2}\)(*)

Áp dụng BĐT Bunhiacopxki dạng phân thức, ta được:

\(VT_{\left(^∗\right)}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(z^2+x^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\)\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\)

Đến đây ta đi chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\ge\frac{\sqrt{3}}{2}\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\)\(\ge\sqrt{3}\left[x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)\right]\)

Ta có: \(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\)\(\le\frac{1}{\sqrt{2}}\sqrt{\left(\frac{2x^2+y^2+z^2+y^2+z^2}{3}\right)^3}\)

\(=\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Tương tự ta có: \(y\left(z^2+x^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

\(z\left(x^2+y^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Cộng theo vế của 3 BĐT trên, ta được: 

\(\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le\frac{2\sqrt{3}}{3}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

\(\Leftrightarrow\sqrt{3}\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Cuối cùng ta cần chứng minh được

\(2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\le2\left(x^2+y^2+z^2\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2\ge1\)(đúng)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}\)

Khách vãng lai đã xóa