Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng vợi mọi a, b, c là các số thực dương thì \(\left(\frac{a+b}{2}\right)^3+\left(\frac{b+c}{2}\right)^3+\left(\frac{c+a}{2}\right)^3\le a^3+b^3+c^3\)
Cho 3 số thực dương a, b, c.
Chứng minh rằng: \(\frac{b}{a\left(a+b\right)}+\frac{c}{b\left(b+c\right)}+\frac{a}{c\left(c+a\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Chứng minh rằng nếu ta có đẳng thức:
\(a\left(b-c\right)x^2+b\left(c-a\right)xy+c\left(a-b\right)y^2=d\left(x-y\right)^2\) trong đó \(a,b,c\ne0\) đúng với mọi x và y thì: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)
Bài 1 : Cho 2 số thực a , b thỏa mãn a + b = 5 và ab = 6 . Hãy tính giá trị của các biểu thức sau : \(a^2+b^2\) ; \(a^3+b^3\); \(a^4+b^4\) ; \(a^5+b^5\) ; \(a^6+b^6\)
Bài 2 :
a) Chứng minh rằng : \(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\) với mọi số thực a , b
b) Cho hằng đẳng thức \(2a^2-5ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)
c) Chứng minh rằng \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
d) Chứng minh rằng \(\left(ax+by\right)^2+\left(ay-bx\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi số thực a , b , x , y
Chứng minh rằng nếu a, b, c là các số dương và a + b + c = 1 thì \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2>33\)
Cho các số thực dương a,b,c,d. Chứng minh rằng: \(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+c\right)^2}+\frac{1}{\left(1+d\right)^2}\ge1\)
Viet Nam TTS 1996 - Những cách giải hay$?$
Cho $a,b,c$ là các số thực. Chứng minh rằng:
\[(a+b)^4 +(b+c)^4 +(c+a)^4 \geqq \frac{4}{7}(a^4+b^4+c^4)\]
Giải (cách của em)
Đặt $t=\frac{a+b}{2}$ và $f(a;b;c)=\text{VT-VP}$
Ta có: \[f(a;b;c) -f(t;t;c) = {\frac {3\, \left( a-b \right) ^{2}\Big[7\,{a}^{2}+10\,ab+7\,{b}^{2}+56\,c
\left( a+b+c \right) \Big]}{56}} \geqq 0\]
Ta có điều này là vì \[\sum\limits_{cyc} a(a+b+c) \geqq 0\] nên có thể giả sử $c(a+b+c) \geqq 0$
Sau cùng$,$ ta chứng minh \[f(t;t;tc) \geqq 0 \Leftarrow {\frac {2\, \left( 5\,{c}^{2}+14\,ct-{t}^{2} \right) ^{2}}{35}}+{
\frac {12\, \left( 2\,c+7\,t \right) ^{2}{t}^{2}}{35}} \geqq 0\]
Xong.
Em rất muốn xem những cách khác từ mọi người$?$
Cho a, b, c là số ba số dương thỏa mãn a.b.c = 1. Chứng minh rằng: \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Chứng minh rằng với mọt a,b,c >0 thì
\(\frac{a^{2^{ }}+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\le\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)