Cho 3 số thực dương a, b, c.
Chứng minh rằng: \(\frac{b}{a\left(a+b\right)}+\frac{c}{b\left(b+c\right)}+\frac{a}{c\left(c+a\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a, b, c là số ba số dương thỏa mãn a.b.c = 1. Chứng minh rằng: \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Bài 1: a) Cho x>0,y>0 và m,n là hai số thực .Chứng minh rằng \(\frac{m^2}{x}+\frac{n^2}{y}\) ≥ \(\frac{\left(m+n\right)^2}{x+y}\)
b)Cho a,b,c là 3 số dương thỏa mãn abc=1.Chứng minh rằng : \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\) ≥\(\frac{3}{2}\)
Bài 5:
a) Cho x>0, y>0 và m, n là hai số thực. Chứng minh rằng\(\frac{m^2}{x}+\frac{n^2}{y}\)≥\(\frac{\left(m+n\right)^2}{x+y}\)
b) Cho a, b, c là ba số dương thỏa mãn abc=1.
Chứng minh rằng \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)≥\(\frac{3}{2}\)
Bài 1 : Cho 2 số thực a , b thỏa mãn a + b = 5 và ab = 6 . Hãy tính giá trị của các biểu thức sau : \(a^2+b^2\) ; \(a^3+b^3\); \(a^4+b^4\) ; \(a^5+b^5\) ; \(a^6+b^6\)
Bài 2 :
a) Chứng minh rằng : \(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\) với mọi số thực a , b
b) Cho hằng đẳng thức \(2a^2-5ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)
c) Chứng minh rằng \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
d) Chứng minh rằng \(\left(ax+by\right)^2+\left(ay-bx\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi số thực a , b , x , y
Cho các số thực dương a,b,c. CMR
\(\frac{\left(b+c-a\right)^2}{\left(b+c\right)^2+a^2}+\frac{\left(a+c-b\right)^2}{\left(a+c\right)^2+b^2}+\frac{\left(b+a-c\right)^2}{\left(b+a\right)^2+c^2}\ge\frac{3}{5}\)
Cho a, b, c là 3 số thực dương. CMR
\(\frac{\left(a+b\right)^2}{ab}+\frac{\left(b+c\right)^2}{bc}+\frac{\left(c+a\right)^2}{ca}\ge9+2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Cho 3 số thực a,b,c đôi một khác nhau thỏa mãn \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\) . Chứng minh rằng \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
cho 3 số dương a,b,c chứng minh \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\ge\frac{10}{3}\)