Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thu Trang

Bài 1 : Cho 2 số thực a , b thỏa mãn a + b = 5 và ab = 6 . Hãy tính giá trị của các biểu thức sau : \(a^2+b^2\) ; \(a^3+b^3\); \(a^4+b^4\) ; \(a^5+b^5\) ; \(a^6+b^6\)

Bài 2 :

a) Chứng minh rằng : \(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\) với mọi số thực a , b

b) Cho hằng đẳng thức \(2a^2-5ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)

c) Chứng minh rằng \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

d) Chứng minh rằng \(\left(ax+by\right)^2+\left(ay-bx\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi số thực a , b , x , y


Các câu hỏi tương tự
Suzanna Dezaki
Xem chi tiết
Phan Hà Thanh
Xem chi tiết
tthnew
Xem chi tiết
Thục Trinh
Xem chi tiết
Qynh Nqa
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Qynh Nqa
Xem chi tiết
Hoàng Thị Mai Trang
Xem chi tiết
Bí Mật
Xem chi tiết