Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
miner ro
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
hello xin chào
11 tháng 7 2023 lúc 10:11

kb với miinhf ko

 

Lê Song Phương
11 tháng 7 2023 lúc 16:04

a) Ta thấy \(\dfrac{EA}{EK}=\dfrac{ED}{EB}=\dfrac{EG}{EA}\) nên \(AE^2=EK.EG\) (đpcm)

b) Ta có \(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{BD}=\dfrac{DE+BE}{BD}=1\) nên suy ra \(\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)

bong gau
Xem chi tiết
đặng anh thơ
16 tháng 3 2015 lúc 17:15

a) vì tứ giác ABCD là hình bình hành 

=> AB // CD

=>AB // DG

=> \(\frac{EB}{ED}\)\(\frac{AE}{EG}\)                (1)

vì ABCD là hình bình hành

=> AD // BC

=> AD // BK

=>\(\frac{AE}{EG}\)\(\frac{EK}{AE}\)                  (2)

TỪ  (1) VÀ (2) => \(\frac{AE}{EG}\)\(\frac{EK}{AE}\)

=> AE2 = EK . EG              (đpcm)

b) vì AB // DG => \(\frac{AE}{AG}\)\(\frac{BE}{BD}\)

MÀ AD // BK => \(\frac{AE}{AK}\)\(\frac{DE}{BD}\)

CỘNG 2 VẾ TRÊN

=> \(\frac{AE}{AG}\)\(\frac{AE}{AK}\) = \(\frac{BE}{BD}+\frac{DE}{BD}=1\)

<=> AE ( \(\frac{1}{AG}+\frac{1}{AK}\)) = 1

<=> \(\frac{1}{AG}+\frac{1}{AK}\)\(\frac{1}{AE}\)      (đpcm)

c) vì AD // BK => \(\frac{BK}{AD}=\frac{EB}{DE}\)

CÓ AB // DG => \(\frac{AB}{DG}=\frac{BE}{DE}\)

=> \(\frac{BK}{AD}=\frac{AB}{DG}\)

=> BD . DG = AB . AD

mà AB, AD là các cạnh của hình bình hành ABCD => AB . AD không đổi

=> BK . DG không đổi (đpcm)

trinh hoang hai
Xem chi tiết
Thuy Le
Xem chi tiết
Tuyết Ly
Xem chi tiết
Duy Nam
7 tháng 3 2022 lúc 15:19

undefined

ILoveMath đã xóa
Vân Đoàn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2023 lúc 23:28

a: Xét ΔDAE và ΔBFE có

góc DAE=góc BFE

góc DEA=góc BEF

=>ΔDAE đồng dạng với ΔBFE

Xét ΔDEG và ΔBEA có

góc DEG=góc BEA

góc EDG=góc EBA

=>ΔDEG đồng dạng với ΔBEA

b: ΔDAE đồng dạng với ΔBFE

=>AE/FE=DE/BE=DA/BF

ΔDEG đồng dạng với ΔBEA

=>AE/EG=BE/DE

=>EG/AE=AE/FE
=>AE^2=EG*EF

Cuồng Song Joong Ki
Xem chi tiết
Hoàng Bình Minh
Xem chi tiết
Uyên Thi
Xem chi tiết