\(\left(2x-4\right)^2=16\)
\(\left(x+2\right)\left(x^2+2x+1\right)-\left(x-2\right)\left(x^2-2x\right)+4-16\)
Yêu cầu đề là gì thế bạn? Bạn cần viết rõ ra thì mọi người mới giúp được chứ????
\(\left(3-4x\right)^2=25\)
\(\left(2x-\frac{1}{4}\right)^2=16\)
\(\left(4-x\right)^2=-16\)
\(\left(2x+5\right)^2=0\)
\(\left(3-4x\right)^2=25=5^2\)
\(\Rightarrow3-4x=5\)
\(\Rightarrow4x=3-5=-2\Rightarrow x=-\frac{1}{2}\)
\(\left(2x-\frac{1}{4}\right)^2=16=4^2\)
\(\Rightarrow2x-\frac{1}{4}=4\Rightarrow2x=4+\frac{1}{4}=\frac{17}{4}\)
\(\Rightarrow x=\frac{17}{4}:2=\frac{17}{4}.\frac{1}{2}=\frac{17}{8}\)
Đề số 3 bị sai.
\(\left(2x+5\right)^2=0\Rightarrow2x+5=0\Rightarrow2x=-5\Rightarrow x=-\frac{5}{2}\)
(3-4x)2=25
3-4x=5
4x=3-5
4x=-2
x=-2:4
x=-0,5
b)(2x-1/42)=16
2x-1/4=4
2x=4+1/4
2x=4,25
x=2,125
c) cái này x ở đâu vậy bn
d) (2x+5)2=0
2x+5=0
2x=0+5
2x=5
x=5:2
x=5/2
Nhớ k cho mk nha
a)\(\left(3-4x\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}3-4x=5\\3-4x=-5\end{cases}}\Rightarrow\orbr{\begin{cases}4x=3-5\\4x=3-\left(-5\right)\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-2\\4x=8\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=2\end{cases}}\)
b) \(\left(2x-\frac{1}{4}\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{4}=4\\2x-\frac{1}{4}=-4\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2x=-4+\frac{1}{4}\\2x=4+\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-\frac{15}{4}\\2x=\frac{17}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-15}{4}:2\\x=\frac{17}{4}:2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{15}{8}\\x=\frac{17}{8}\end{cases}}\)
c)\(\left(4-x\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}4-x=4\\4-x=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=4-4\\x=4-\left(-4\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}\)
d) \(\left(2x+5\right)^2=0\)
\(\Rightarrow2x+5=0\Rightarrow2x=-5\Rightarrow x=\frac{-5}{2}\)
Tìm x:
\(4\left(3x^2-4\right)-6\left(2x^2-2x\right)=-16\)
\(x\left(x^3y-x\right)-x^2\left(x^2y-2\right)=4\)
4(3x2-4)-6(2x2-2x)=-16
12x2-16-12x2+12x=-16
12x2-12x2+12x=16-16
12x=0
=>x=0
\(4\left(3x^2-4\right)-6\left(2x^2-2x\right)=-16.\)
\(12x^2-16-12x^2+12x=-16\)
\(12x^2-12x^2+12x=16-16\)
\(12x=0\)
Học tốt
\(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
a, \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-\left(x^2-x+x-1\right)=16\)
\(\Leftrightarrow8x+1=0\Leftrightarrow x=-\frac{1}{8}\)
b, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow2x+255=0\Leftrightarrow x=-\frac{225}{2}\)
c, \(\left(x+2\right)\left(x-2\right)-x^3-2x=15\)
\(\Leftrightarrow x^2-4-x^3-2x=15\)( vô nghiệm )
d, \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3+6x^2-x+8x^3+1=28\)
\(\Leftrightarrow15x^2+26=0\Leftrightarrow x^2\ne-\frac{26}{15}\)( vô nghiệm )
Tính nhẩm hết á, sai bỏ quá nhá, sắp đi hc ... nên chất lượng hơi kém xíu ~~~
a) ( x + 4 )2 - ( x + 1 )( x - 1 ) = 16
<=> x2 + 8x + 16 - ( x2 - 1 ) = 16
<=> x2 + 8x + 16 - x2 + 1 = 16
<=> 8x + 17 = 16
<=> 8x = -1
<=> x = -1/8
b) ( 2x - 1 )2 + ( x + 3 )2 - 5( x + 7 )( x - 7 ) = 0
<=> 4x2 - 4x + 1 + x2 + 6x + 9 - 5( x2 - 49 ) = 0
<=> 5x2 + 2x + 10 - 5x2 + 245 = 0
<=> 2x + 255 = 0
<=> 2x = -255
<=> 2x = -255/2
c) ( x + 2 )( x2 - 2x + 4 ) - x( x2 + 2 ) = 15
<=> x3 + 23 - x3 - 2x = 15
<=> 8 - 2x = 15
<=> 2x = -7
<=> x = -7/2
d) ( x + 3 )3 - x( 3x + 1 )2 + ( 2x + 1 )( 4x2 - 2x + 1 ) = 28
<=> x3 + 9x2 + 27x + 27 - x( 9x2 + 6x + 1 ) + [ ( 2x )3 + 13 ] = 28
<=> x3 + 9x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 + 1 = 28
<=> 3x2 + 26x + 28 = 28
<=> 3x2 + 26x = 0
<=> x( 3x + 26 ) = 0
<=> \(\orbr{\begin{cases}x=0\\3x+26=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{26}{3}\end{cases}}\)
giải các phương trình sau
\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\)16
\(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)
\(\left(x^4+2x^3+10x-25\right):\left(x^2+5\right)=3\)
Giai hptr : \(\left\{{}\begin{matrix}\left(2y-3\right)\left(3x-4\right)=\left(3y+1\right)\left(2x-5\right)\\2\left(y-3\right)+16=3\left(x+2\right)\end{matrix}\right.\)
=>6xy-8y-9x+12=6xy-15y+2x-5 và 2y-6+16=3x+6
=>-9x-8y+12+15y-2x+5=0 và 3x+6-2y-10=0
=>-11x+7y=-17 và 3x-2y=4
=>x=6 và y=7
Tìm x biết: \(\frac{4}{\left(x+2\right).\left(x+6\right)}+\frac{7}{\left(x+6\right).\left(x+13\right)}=\frac{2x+1}{\left(x+2\right).\left(x+16\right)}-\frac{3}{\left(x+13\right).\left(x+16\right)}\)
Vế trái: 4/(x+2).(x+6)+7/(x+6).(x+13)
<=>1/x+2 -1/x+6 +1/x+6 -1/x+13
<=>1/x+2-1/x+13
=> 1/x+2-1/x+13=2x+1/(x+2).(x+16) -3/(x+13).(x+16)
<=>1/x+2 - 1/x+13 + 1/x+13 - 1/x+16=2x+1/(x+2).(x+16)
<=>1/x+2 - 1/x+16=2x+1/(x+2).(x+16)
<=> 14/(x+2).(x+16)= 2x+1/(x+2).(x+16)
<=> 2x+1=14
<=> 2x=14-1
<=> 2x=13
<=> x=13:2
<=> x=13/2
Vậy x=13/2
Chắc là vầy. Mk cug ko chắc nữa
\(\left(2x+1\right)^4+16\left(x-2\right)^4=17\)
1) Rút gọn
\(12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
2)
Tìm min:
\(\left|2x+4\right|+\left|2x+6\right|+\left|2x+8\right|\)
\(A=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(A=\dfrac{24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(A=\dfrac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(A=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(A=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(A=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{2}\)
\(A=\dfrac{5^{32}-1}{2}\)
\(A=\left|2x+4\right|+\left|2x+6\right|+\left|2x+8\right|\)
\(A=\left|2x+4\right|+\left|2x+8\right|+\left|2x+6\right|\)
\(A=\left|2x+4\right|+\left|-2x-8\right|+\left|2x+6\right|\)
\(A\ge\left|2x+4-2x-8\right|+\left|2x+6\right|\)
\(A\ge4+\left|2x+6\right|\)
Vì \(\left|2x+6\right|\ge0\) nên \(A\ge4\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}2x+4\le0\\2x+6=0\\2x+8\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\le-4\\2x=-6\\2x\ge-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le-2\\x=-3\\x\ge-4\end{matrix}\right.\)
Vậy \(x=-3\)
BT1: Khai triển
\(d,\left(x+2\right)\left(x^2-2x+4\right)\)
\(e,\left(\dfrac{1}{4}-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{20}+\dfrac{1}{16}\right)\)
d) \(\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)\left(x^2-2\cdot x+2^2\right)\)
\(=x^3+2^3\)
\(=x^3+8\)
e) \(\left(\dfrac{1}{4}-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{20}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left(\dfrac{1}{25}x^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left[\left(\dfrac{1}{5}x\right)^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\right]\)
\(=\left(\dfrac{1}{4}\right)^3-\left(\dfrac{1}{5}x\right)^3\)
\(=\dfrac{1}{64}-\dfrac{1}{125}x^3\)
\(=\dfrac{1}{64}-\dfrac{x^3}{125}\)
d: (x+2)(x^2-2x+4)
=(x+2)(x^2-x*2+2^2)
=x^3+8
e: (1/4-x/5)(1/16+x/20+x^2/25)
=(1/4-x/5)[(1/4)^2+1/4*x/5+(x/5)^2]
=1/64-x^3/125