Tìm 3 số a,b,c nguyên dương thỏa mãn
ab+ac+bc=abc+2
mình cần ngay bây giờ
Cho a,b,c là các số nguyên thỏa mãn: a³+b³=2021c³. Chứng minh rằng: a+b+c chia hết cho 3
mn ơi mik cần gấp ngay bây giờ ạ!!
\(a^3+b^3=2021c^3\\ \Leftrightarrow a^3+b^3+c^3=2022c^3⋮6\left(2022⋮6\right)\left(1\right)\)
Mặt khác: \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)\)
Có \(\left(a-1\right)a\left(a+1\right);\left(b-1\right)b\left(b+1\right);\left(c-1\right)c\left(c+1\right)\) là 3 cặp số nguyên liên tiếp nên chia hết cho 6
Do đó \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
Kết hợp (1) ta được đpcm
41.36+36.59+400
3 mũ 3 - hai mũ 3: 2+11.5 mũ 2
Mình cần ngây bây giờ ạ
\(41\cdot36+36\cdot59+400\)
\(=36\cdot\left(41+59\right)+400\)
\(=36\cdot100+400\)
\(=3600+400\)
\(=4000\)
___________
\(3^3-2^3:2+11\cdot5^2\)
\(=27-8:2+11\cdot25\)
\(=27-4+\left(10+1\right)\cdot25\)
\(=27-4+250+25\)
\(=23+275\)
\(=298\)
Cho các số a, b, c nguyên dương thỏa mãn ab+bc = 518 và bc-ac = 360. Tính giá trị lớn nhất của tích abc.
a,b,b là các số thực dương thỏa mãn a+b+c=3
Tìm GTLN của biểu thức P = 2(ab+bc+ac) - abc
\(a=b=c=1\rightarrow P=5\)ta se cm P=5 la gtln cua P that vay ta se cm
\(5p^3+27r\ge18pq\Leftrightarrow5p^3+27r-18pq\ge0\).theo bdt schur
\(LHS\ge5p^3+3p\left(4q-p^2\right)-18pq=2p\left(p^2-3q\right)\ge0\)
Vay \(P_{max}=5\leftrightarrow a=b=c=1\)
Đặt P = F(a;b;c).
Xét hiệu \(F\left(a;b;c\right)-F\left(t;t;c\right)=2\left(ab+bc+ca-t^2-2tc\right)+c\left(t^2-ab\right)\)
\(=2\left(ab-t^2\right)-c\left(ab-t^2\right)+2c\left(a+b-2t\right)\)
\(=2\left(ab-t^2\right)-c\left(ab-t^2\right)\)
\(=\left(ab-t^2\right)\left(2-c\right)\le0\) với \(t=\frac{a+b}{2}\). Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)\)
Ta sẽ chứng minh \(f\left(t;t;c\right)\le5\) hay \(2\left(t^2+2tc\right)-t^2c\le5\)
\(\Leftrightarrow\left(2-c\right)t^2+4tc-5\le0\). Thật vậy từ giả thiết suy ra \(c=3-2t\).Mặt khác do c > 0 và t > 0 nên \(0< t< \frac{3}{2}\)
Do đó ta cần chứng minh \(\left(2t-1\right)t^2+4t\left(3-2t\right)-5\le0\) với \(0< t< \frac{3}{2}\)
\(\Leftrightarrow\left(t-1\right)^2\left(2t-5\right)\le0\). BĐT này đúng với mọi \(0< t< \frac{3}{2}\)
P/s: Is it true?? Em mới học dồn biến nên ko chắc đâu..
Tìm 3 số nguyên tố a, b, c khác nhau thỏa mãn:
abc < ab +bc +ac
Cho a,b,c thuộc R thoả mãn
ab+bc+ca=abc và a+b+c=1
tìm a,b,c
Ta có: ab+bc+ca=abc
nên abc-ab-bc-ac=0
Ta có: a+b+c=1
nên a+b+c-1=0
Ta có: abc-ab-bc-ac+a+b+c-1=0
\(\Leftrightarrow\left(abc-ab\right)-\left(bc-b\right)-\left(ac-a\right)+\left(c-1\right)=0\)
\(\Leftrightarrow ab\left(b-1\right)-b\left(c-1\right)-a\left(c-1\right)+\left(c-1\right)=0\)
\(\Leftrightarrow b\left(c-1\right)\left(a-1\right)-\left(c-1\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)
Tìm số nguyên n biết:
3-2n chia hết cho n+1
Giúp mình đi, mình cần gấp ngay bây giờ
\(3-2n⋮n+1\)
\(\Leftrightarrow-2n+3⋮n+1\)
\(\Leftrightarrow-2\left(n+1\right)+5⋮n+1\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(5\right)\)
\(\RightarrowƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n+1 | -1 | 1 | -5 | 5 |
n | -2 | 0 | -6 | 4 |
KL | tm | tm | tm | tm |
mình chưa hiểu, giải thích từ đầu đến cuối đi
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA, lấy điểm D sao cho MD= MA.
a) Chứng minh: Tam giác AMB= Tam giác CMD
b) Chứng minh: AC= BD và AC//BD
c) Chứng minh: Tam giác ABC = tam giác BCD. Tính số đo góc BDC.
Mina giúp mk chút nha! Mk cần gấp ngay bây giờ!
Arigatou!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
cho a, b, c là các số nguyên dương thỏa mãn \(ab+bc+ca+2\left(a+b+c\right)=8045\) và \(abc-a-b-c=-2\). tìm a+b+c