Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng nhật Giang
Xem chi tiết
Trà My
7 tháng 8 2017 lúc 13:28

dài quá, làm từ từ nhé

1, \(\left(a-b\right)^2\left(2a-3b\right)-\left(b-a\right)^2\left(3a-5b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-b\right)^2\left(2a-3b-3a+5b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-b\right)^2\left(-a+2b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=-\left(a-b\right)^2\left(a-2b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-2b\right)\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\)

\(=\left(a-2b\right)\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=4ab\left(a-2b\right)\)

2, \(x^4-4\left(x^2+5\right)-25=\left(x^2-25\right)-4\left(x^2+5\right)=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)

\(=\left(x^2-9\right)\left(x^2+5\right)=\left(x-3\right)\left(x+3\right)\left(x^2+5\right)\)

Trà My
7 tháng 8 2017 lúc 14:23

3,\(\left(2-x\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)=\left(x-2\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)\)

\(=\left(x-2\right)\left(x-2+x+3\right)-\left(2x-1\right)\left(2x+1\right)\)

\(=\left(x-2\right)\left(2x+1\right)-\left(2x-1\right)\left(2x+1\right)\)

\(=\left(x-2-2x+1\right)\left(2x+1\right)\)

\(=\left(-x-1\right)\left(2x+1\right)\)

4, câu này đề thiếu

5,\(16\left(xy+6\right)^2-\left(4x^2+y^2-25\right)^2=\left(4xy+24\right)^2-\left(4x^2+y^2-25\right)^2\)

\(=\left(4xy+24-4x^2-y^2+25\right)\left(4xy+24+4x^2+y^2-25\right)\)

\(=\left[49-\left(4x^2-4xy+y^2\right)\right]\left[\left(4x^2+4xy+y^2\right)-1\right]\)

\(=\left[49-\left(2x-y\right)^2\right]\left[\left(2x+y\right)^2-1\right]\)

\(=\left(7-2x+y\right)\left(7+2x-y\right)\left(2x+y-1\right)\left(2x+y+1\right)\)

Trà My
7 tháng 8 2017 lúc 14:47

6, \(\left(x+y-2z\right)^2+\left(x+y+2z\right)^2-16z^2\)

\(=\left(x+y-2z\right)^2+\left(x+y+2z-4z\right)\left(x+y+2z+4z\right)\)

\(=\left(x+y-2z\right)^2+\left(x+y-2z\right)\left(x+y+6z\right)\)

\(=\left(x+y-2z\right)\left(x+y-2z+x+y+6z\right)\)

\(=\left(x+y-2z\right)\left(2x+2y+4z\right)\)

\(=2\left(x+y-2z\right)\left(x+y+2z\right)\)

7,\(=a^2x^2+6axy+9y^2-\left(-6ax^2-6ay^2+x^2+y^2\right)+9x^2-6axy+a^2y^2\)

\(=a^2x^2+6axy+9y^2+6ax^2+6ay^2-x^2-y^2+9x^2-6axy+a^2y^2\)

\(=a^2x^2+6ax^2+8x^2+a^2y^2+6ay^2+8y^2\)\(=x^2\left(a^2+6a+8\right)+y^2\left(a^2+6a+8\right)\)

\(=\left(x^2+y^2\right)\left(a^2+6a+8\right)\)\(=\left(x^2+y^2\right)\left(a^2+2a+4a+8\right)\)

\(=\left(x^2+y^2\right)\left[a\left(a+2\right)+4\left(a+2\right)\right]=\left(x^2+y^2\right)\left(a+2\right)\left(a+4\right)\)

Hoàng văn toàn
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 19:27

`2x+5y=11(1)`

`2x-3y=0(2)`

Lấy (1) trừ (2)

`=>8y=11`

`<=>y=11/8`

`<=>x=(3y)/2=33/16`

Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 19:28

a) Ta có: \(\left\{{}\begin{matrix}2x+5y=11\\2x-3y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{8}\\2x=3y=3\cdot\dfrac{11}{8}=\dfrac{33}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\4x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-2=4\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(3;-2)

Yeutoanhoc
28 tháng 2 2021 lúc 19:28

`b)4x+3y=6(1)`

`2x+y=4<=>4x+2y=8(2)`

Lấy (1) trừ (2) ta có:

`y=-2`

`<=>x=(4-2y)/2=3`

Anh PVP
Xem chi tiết
Gia Huy
27 tháng 7 2023 lúc 22:24

a Đề sai: )

b

\(a^3-a^2x-ay+xy\\ =a^2\left(a-x\right)-y\left(a-x\right)\\ =\left(a-x\right)\left(a^2-y\right)\)

c

\(4x^2-y^2+4x+1\\ =\left(2x\right)^2+2.2x.1+1-y^2\\ =\left(2x+1\right)^2-y^2\\ =\left(2x+1-y\right)\left(2x+1+y\right)\)

d

\(x^4+2x^3+x^2\\ =x^4+x^3+x^3+x^2\\ =x^3\left(x+1\right)+x^2\left(x+1\right)\\ =\left(x^3+x^2\right)\left(x+1\right)\)

e

\(5x^2-10xy+5y^2-5z^2\\ =5\left(x^2-2xy+y^2-z^2\right)\\ =5\left[\left(x-y\right)^2-z^2\right]\\ =5\left(x-y-z\right)\left(x-y+z\right)\)

Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 22:10

c: =(2x+1)^2-y^2

=(2x+1+y)(2x+1-y)

d: =x^2(x^2+2x+1)

=x^2(x+1)^2

e: =5(x^2-2xy+y^2-z^2)

=5[(x-y)^2-z^2]

=5(x-y-z)(x-y+z)

Scarlett
Xem chi tiết
Minhmetmoi
7 tháng 10 2021 lúc 12:47

Đk: \(x\ge1\)

\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)

\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))

Minhmetmoi
8 tháng 10 2021 lúc 13:31

Muốn giải mấy bài kiểu này thì mình hay đoán nghiệm trước

Việc đoán nghiệm thì có thể dùng kinh nghiệm hoặc bấm máy tính

Ở đây mình đoán được nghiệm là x=5/4 nên ta sẽ cố gắng tạo ra nhân tử dạng

4x-5 hoặc x-(5/4) ở đầy mình chọn nhân tử 4x-5

Trong những phương trình chứa căn thức thì để tạo nhân tử thì cách thường dùng nhất là phép liên hợp

Phép liên hợp là phép kiểu: \(\sqrt{a}-\sqrt{b}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)

Ok, ta biến đổi pt lại để tạo nhân tử 4x-5:

\(\left(8\sqrt{x-1}-4\right)+\left(4x^2+3x-10\right)=0\) (ở đây ta thay x=5/4 vào 8căn(x-1) thì được 4 nên ta sẽ ghép với 4, còn phần còn lại của pt thì gộp lại chung)

\(\dfrac{4\left(2\sqrt{x-1}-1\right)\left(2\sqrt{x-1}+1\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)(sử dụng phép liên hợp)

\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)

Ở đây thì với đk x>=1 thì ngoặc to sẽ lớn hơn 0 nên kêt luận x=5/4

Nguyễn Học Tùng Lâm
Xem chi tiết
Edogawa Conan
26 tháng 6 2021 lúc 9:17

1) x2 - x - y2 - y = (x - y)(x + y) - (x + y) = (x - y - 1)(x + y)

2. x2 - 2xy + y2 - z2 = (x - y)2 - z2 = (x - y - z)(x - y + z)

3. 5x - 5y + ax - ay = 5(x - y) + a(x - y) = (a + 5)(x - y)

4. a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)

5. 4x2 - y2 + 4x + 1 = (2x + 1)2 - y2 = (2x + 1 - y)(2x  + y + 1)

6. x3 - x + y3 - y = (x + y)(x2 - xy + y2) - (x + y) = (x + y)(x2 - xy + y2 - 1)

Khách vãng lai đã xóa
Quỳnh Anh
26 tháng 6 2021 lúc 10:39

Trả lời:

1, x2 - x - y2 - y

= ( x2 - y2 ) - ( x + y )

= ( x - y ) ( x + y ) - ( x + y )

= ( x + y ) ( x - y - 1 )

2, x2 - 2xy + y2 - z2

= ( x2 - 2xy + y2 ) - z2

= ( x - y )2 - x2

= ( x - y - z ) ( x - y + z )

3, 5x - 5y + ax - ay

= ( 5x + ax ) - ( 5y + ay )

= x ( 5 + a ) - y ( 5 + a )

= ( 5 + a ) ( x - y )

= ( 5 + a ) ( x - y )

4, a3 - a2x - ay + xy

= ( a3 - a2x ) - ( ay - xy )

= a2 ( a - x ) - y ( a - x )

= ( a - x ) ( a2 - y )

5, 4x2 - y2 + 4x + 1

= ( 4x2 + 4x + 1 ) - y2 

= ( 2x + 1 )2 - y2

= ( 2x + 1 - y ) ( 2x + 1 + y )

6, x3 - x + y3 - y

= ( x3 + y3 ) - ( x + y )

= ( x + y ) ( x2 - xy + y ) - ( x + y )

= ( x + y ) ( x2 - xy + y - 1 )

Khách vãng lai đã xóa
Teendau
Xem chi tiết
Tú72 Cẩm
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 9 2023 lúc 13:53

a: \(\left\{{}\begin{matrix}ax+y=2a\\x-a=1-ay\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}ax+y=2a\\x+ay=a+1\end{matrix}\right.\)

Khi a=2 thì hệ sẽ là \(\left\{{}\begin{matrix}2x+y=4\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=6\end{matrix}\right.\)

=>-3y=-2 và x+2y=3

=>y=2/3 và x=3-2y=3-4/3=5/3

2:

a: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{a}{1}< >\dfrac{1}{a}\)

=>a^2<>1

=>a<>1 và a<>-1

Để hệ có vô số nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}=\dfrac{2a}{a+1}\)

=>a^2=1 và a^2+a=2a

=>a=1

Để hệ vô nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}< >\dfrac{2a}{a+1}\)

=>a^2=1 và a^2+a<>2a

=>a=-1

Lê Nguyễn Ngoc Anh
Xem chi tiết
Yen Nhi
5 tháng 4 2022 lúc 21:45

`Answer:`

1) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=[x\left(x+3\right)][\left(x+1\right)\left(x+2\right)]+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

2) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)

\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)

\(=[\left(12x^2+11x+0,5\right)+1,5][\left(12x^2+11x+0,5\right)-1,5]-4\)

\(=\left(12x^2+11x+0,5\right)^2-\left(1,5\right)^2-4\)

\(=\left(12x^2+11x+0,5\right)^2-\left(2,5\right)^2\)

\(=\left(12x^2+11x+0,5-2,5\right)\left(12x^2+11x+0,5+2,5\right)\)

\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

3) \(\left(x^2+6x+5\right)\left(x^2+10x+21\right)+15\)

\(=\left(x^2+x+5x+5\right)\left(x^2+3x+7x+21\right)+15\)

\(=\left(x+1\right)\left(x+5\right)\left(x+3\right)\left(x+7\right)+15\)

\(=[\left(x+1\right)\left(x+7\right)][\left(x+5\right)\left(x+3\right)]+15\)

\(=\left(x^2+x+7x+7\right)\left(x^2+3x+5x+15\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(v=x^2+=8x+11\)

Đa thức có dạng sau: \(\left(v-4\right)\left(v+4\right)+15\)

\(=v^2-4^2+15\)

\(=v^2-1\)

\(=\left(v+1\right)\left(v-1\right)\)

\(=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)\)

\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

4) \(\left(x^2-a\right)^2-6x^2+4x+2a\)

\(=\left(x^2-a\right)\left(x^2-a\right)-6x^2+4x+2a\)

\(=\left(x^2-a\right).x^2-a\left(x^2-a\right)-6x^2+4x+2a\)

\(=x^4-ax^2-a.\left(x^2-a\right)-6x^2+4x+2a\)

\(=x^4-ax^2-\left(ax^2-aa\right)-6x^2+4x+2a\)

\(=x^4-2ax^2+a^2-6x^2+2a+4x\)

6) \(a^2-b^2-c^2+2bc-2a+1\)

\(=\left(a^2-2a+1\right)-\left(b^2-2bc+c^2\right)\)

\(=\left(a-1\right)^2-\left(b-c\right)^2\)

\(=\left(a-b+c-1\right)\left(a+b-c-1\right)\)

7) \(4a^2-4b^2+16bc-16c^2\)

\(=4a^2-\left(4b^2-16bc+16c^2\right)\)

\(=\left(2a\right)^2-\left(2b-4c\right)^2\)

\(=\left(2a-2b+4c\right)\left(2a+2b-4c\right)\)

\(=2.\left(a-b-2c\right).2\left(a+b-2c\right)\)

\(=4\left(a-b-2c\right)\left(a+b-2c\right)\)

Khách vãng lai đã xóa
Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Linh Chi
28 tháng 4 2020 lúc 14:55

Ta có: \(4x^5y^2-3x^3y+7x^3y+ax^5y^2\)

\(=\left(4+a\right)x^5y^2+\left(-3+7\right)x^3y\)

\(=\left(4+a\right)x^5y^2+4x^3y\)

Vì đa thức có bậc là 4 

mà \(x^5y^2\)có bậc là 7 

nên : \(4+a=0\)<=> a = -4 

Khi đó đa thức bằng: \(4x^3y\) có bậc là 4 

Vậy a = -4

Khách vãng lai đã xóa
Nguyễn Thái Sơn
30 tháng 4 2020 lúc 16:24

Nguyễn Linh Chi hôm qua cô con HD trình bày kiểu này : 

\(4x^5y^2-3x^3y+7x^3y+ax^5y^2\)

\(=\left(4x^5y^2+ax^5y^2\right)+\left(-3x^3y+7x^3y\right)\)

\(=\left(4+a\right)x^5y^2+4x^3y\)

đến đây ta nhận thấy 4x3y có số bậc là 4 . Vì vậy (4+a)x5y2 không tồn tại hay 4+a=0 

\(4+a=0\Rightarrow a=-4\)

Khách vãng lai đã xóa
Nguyễn Thái Sơn
30 tháng 4 2020 lúc 16:26

chết dòng 5 con  thiếu ; bổ sung :

ta nhận thấy 4x3ycó bậc là 4 . Mà theo dữ kiện đề bài ; ta có đa thức trêncó bậc là 4.Vì vậy ,(4+a)x5y2 không tồn tại hay là : (4+a)=0

Khách vãng lai đã xóa