Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hồ Hoài An
Xem chi tiết
Le Hoang Quy Vy
Xem chi tiết
Thanh Từ
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 2 2023 lúc 15:17

a: Gọi E là trung điểm của BC

=>A,G,E thẳng hàng và AG=2GE

Xét ΔEABcó GM//AB

nên BM/BE=AG/AE=2/3

=>BM=2/3BE=2/3*1/2BC=1/3BC

b: Xét ΔEAC có GN//AC
nên CN/CE=AG/AE=2/3

=>CN=2/3*CE=2/3*1/2BC=1/3BC

MN=BC-BM-CN=1/3BC

=>BM=MN=NC

My Vũ
Xem chi tiết
Lucy Châu
Xem chi tiết
Akai Haruma
26 tháng 1 2018 lúc 13:20

Lời giải:

Lấy \(BG\cap AC\equiv E; CG\cap AB\equiv F\)

Vì $G$ là trọng tâm tam giác $ABC$ nên \(\frac{BG}{BE}=\frac{CG}{CF}=\frac{2}{3}\)

Xét tam giác $BEC$ có \(GN\parallel EC\Rightarrow \frac{BN}{BC}=\frac{BG}{BE}=\frac{2}{3}\) (định lý Thales)

\(\Leftrightarrow \frac{BC-BN}{BC}=\frac{1}{3}\Leftrightarrow \frac{NC}{BC}=\frac{1}{3}\) (1)

Xét tam giác $CFB$ có \(GM\parallel FB\Rightarrow \frac{MC}{CB}=\frac{GC}{CF}=\frac{2}{3}\) (định lý Thales)

\(\Leftrightarrow \frac{CB-MC}{CB}=\frac{1}{3}\Leftrightarrow \frac{MB}{CB}=\frac{1}{3}\) (2)

Từ (1); (2)

\(\Rightarrow MN=BC-NC-MB=BC-\frac{1}{3}BC-\frac{1}{3}BC=\frac{1}{3}BC\)

Do đó: \(BM=MN=NC(=\frac{BC}{3})\)

Ta có đpcm.

Nguyễn Ngọc Yến Nhi 8/13
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 11:14

a: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

DH Hải Anh
Xem chi tiết
HT.Phong (9A5)
16 tháng 1 lúc 7:19

 

Xét 2 tam giác AMG và ABH ta có:

\(\widehat{BAH}\) chung 

\(\widehat{AMG}=\widehat{ABH}\) (cặp góc đồng vị do BH//MG) 

\(\Rightarrow\Delta AMG\sim\Delta ABH\left(g.g\right)\) 

\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AH}{AG}\) (1) 

Xét 2 tam giác ANG và ACK có:

\(\widehat{CAK}\) chung 

\(\widehat{ANG}=\widehat{ACK}\) (cặp góc đồng vị do CK//GN) 

\(\Rightarrow\Delta ANG\sim\Delta ACK\left(g.g\right)\)

\(\Rightarrow\dfrac{AC}{AN}=\dfrac{AK}{AG}\) (2) 

Xét hai tam giác BOH và COK ta có: 

\(\widehat{BOH}=\widehat{COK}\) (đối đỉnh) 

\(BO=CO\) (AO là đường trung tuyến nên O là trung điểm của BC) 

\(\widehat{HBO}=\widehat{KCO}\) (so le trong vì BH//MN và CK//MN ⇒ BH//CK) 

\(\Rightarrow\Delta BOH=\Delta COK\left(g.c.g\right)\) 

\(\Rightarrow HO=OK\) (hai cạnh t.ứng) 

\(\Rightarrow HK=2HO\)

Ta lấy (1) + (2) \(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AH+AK}{AG}=\dfrac{AH+AH+HK}{AG}=\dfrac{2AH+HK}{AG}\) 

\(=\dfrac{2AH+2HO}{AG}=\dfrac{2\left(AH+HO\right)}{AG}=\dfrac{2AO}{AG}\) 

Mà G là trọng tâm của tam giác ABC \(\Rightarrow AO=\dfrac{3}{2}AG\) 

\(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{2\cdot\dfrac{3}{2}AG}{AG}=2\cdot\dfrac{3}{2}=3\left(đpcm\right)\)  

тùиɢ иɢυуễи
Xem chi tiết
Hoang Thi Huong Giang
Xem chi tiết
Quỳnh Huỳnh
16 tháng 3 2015 lúc 19:02

T/g BMN đồng dạng vs t/g BAC theo tỉ số 2/3 => C(BMN) = 2/3 C(BAC) = 50cm

\(\frac{MB}{AB}=\frac{2}{3}\Rightarrow\frac{MB}{AB-MB}=\frac{MB}{AM}=\frac{2}{3-2}=2\Rightarrow MB=2AM\)

tương tự, BN=2NC

MN = C(BMN) - BM - BN = 50 - 2(AM+NC) = 18cm