Xác định một đa thức bậc ba f(x) không có hạng tử tự do sao: cho
f(x) - f(x-1)=x2
Xác định một đa thức bậc ba f(x) không có hạng tử tự do sao cho : \(f\left(x\right)-f\left(x-1\right)=x^2\)
Cho đa thức:\(f\left(x\right)=4x^2-7x^2+4x-5x^4-x^2+6x^3+5x^4-5\)
a)Thu gọn rồi sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến .
b)Xác định bậc của đa thức ,hệ số tự do ,hệ số cao nhất.
c)Tính f(-1);f(0);f(0,5);f(1)
xác định đa thức 1 biến f(x) biết đa hức f(x) có bậc 2 ,hệ số cao nhất là 1 hệ số tự do là 9 nghiệmcủa đa thức f(x) là 3
GIUP MIK VS,CẢM ƠN!
Xác định đa thức f(t) có bậc 2 và hệ số của hạng tử có bậc cao nhất bằng 2 và có 2 nghiệm là x1=-1,x2=2
Đa thức \(f\left(t\right)\)có dạng \(2t^2+at+b\)
Có:
\(f\left(-1\right)=2\left(-1\right)^2+a\left(-1\right)+b=0\)
\(2-a+b=0\)
\(b-a=2\)
\(f\left(2\right)=2.2^2+2a+b=0\)
\(8+2a+b=0\)
\(2a+b=-8\)
\(\Rightarrow\left(2a+b\right)-\left(b-a\right)=-8-2\)
\(3a=-10\)
\(a=-10:3\)
\(a=-\frac{10}{3}\)
\(b-\left(-\frac{10}{3}\right)=2\)
\(b=2-\frac{10}{3}\)
\(b=-\frac{4}{3}\)
Vậy \(f\left(t\right)=2t^2+\frac{-10}{3}t+\frac{-4}{3}\)
Xét đa thức \(P = - 3{x^4} + 5{x^2} - 2x + 1\). Đó là một đa thức thu gọn. Hãy quan sát các hạng tử ( các đơn thức) của đa thức P và trả lời các câu hỏi sau:
Trong P, bậc của hạng tử 5x2 là 2 ( số mũ của x2). Hãy xác định bậc của các hạng tử trong P.
Bậc của hạng tử -3x4 là 4 ( số mũ của x4)
Bậc của hạng tử -2x là 1 ( số mũ của x)
Bậc của 1 là 0
Xác định đa thức f(x), biết f(x) có bậc là 1, f( −1) = 2, f( 3) = −1.
b) Xác định đa thức g(x), biết g(x) có bậc là 2, hệ số cao nhất là 5, g(2)=5 và
g(1)=-1
a) Gọi đa thức cần tìm là \(f\left(x\right)=ax+b\)
Do \(f\left(-1\right)=2\) nên thay \(x=-1\) ta có \(-a+b=2\), hay \(b=a+2\)
Do \(f\left(3\right)=-1\) nên thay \(x=3\) ta có \(3a+b=-1\), suy ra \(3a+a+2=-1\)
\(\Rightarrow4a=-3\Rightarrow a=-\dfrac{3}{4}\Rightarrow b=\dfrac{5}{4}\)
Vậy đa thức cần tìm là \(f\left(x\right)=-\dfrac{3}{4}x+\dfrac{5}{4}\)
b) Gọi đa thức cần tìm là \(g\left(x\right)=5x^2+bx+c\)
Do \(g\left(2\right)=5\) nên thay \(x=2\) ta có \(20+2b+c=5\Rightarrow2b+c=-15\)
\(\Rightarrow c=-15-2b\)
Do \(g\left(1\right)=-1\) nên thay \(x=1\) ta có \(5+b+c=-1\Rightarrow b+c=-6\)
\(\Rightarrow b-2b-15=-6\Rightarrow b=-9\Rightarrow c=3\)
Vậy đa thức cần tìm là \(g\left(x\right)=5x^2-9x+3\)
Xác định đa thức f(x) có bậc ba thỏa mãn: \(f\left(x+1\right)-f\left(x\right)=x^2\left(\forall x\right)\) và \(f\left(2\right)=2020\)
Xác định đa thức bậc ba F(x) biết đa thức đó chia cho x-1 ; x-2 ; x-3 đều có số dư là 6 và F (-1) = -18
Đặt F(x) = ax3 + bx2 + cx + d ( a ≠ 0 )
F(x) chia ( x - 1 ) ; ( x - 2 ) ; ( x - 3 ) đều dư 6
=> F(x) - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )
<=> ax3 + bx2 + cx + d - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )
Đến đây ta áp dụng định lí Bézoute :
F(x) - 6 chia hết cho x - 1 <=> F(1) = 0
<=> a + b + c + d - 6 = 0
<=> a + b + c + d = 6 (1)
F(x) - 6 chia hết cho x - 2 <=> F(2) = 0
<=> 8a + 4b + 2c + d - 6 = 0
<=> 8a + 4b + 2c + d = 6 (2)
F(x) - 6 chia hết cho x - 3 <=> F(3) = 0
<=> 27a + 9b + 3c + d - 6 = 0
<=> 27a + 9b + 3c + d = 6 (3)
F(-1) = -18
<=> -a + b - c + d = -18 (4)
Từ (1), (2), (3), (4) => \(\hept{\begin{cases}a+b+c+d=8a+4b+2c+d=27a+9b+3c+d=6\\-a+b-c+d=-18\end{cases}}\)
< Để giải hệ này xài máy 580VN X, Menu -> 9 -> 1 -> 4 >
Giải hệ ta được a = 1 ; b = -6 ; c = 11 ; d = 0
=> F(x) = x3 - 6x2 + 11x
Bài 6. Cho hai đa thức: f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4
g(x) = x5 - 9 + 2x2 +7x4 + 2x3 - 3x.
a) Sắp xếp các đa thức theo luỹ thừa giảm của biến. Xác định bậc, hệ số cao nhất, hệ số tự do của mỗi đa thức.
b) Tính tổng h(x) = f(x) + g(x) c) Tìm nghiệm của đa thức h(x).
a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9
g(x)=x^5+7x^4+2x^3+2x^2-3x-9
b: H(x)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9
=3x^2+x
c: H(x)=0
=>x(3x+1)=0
=>x=0 hoặc x=-1/3