Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thu Hiền
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

Trang Nguyễn
Xem chi tiết
ILoveMath
1 tháng 12 2021 lúc 21:49

a,ĐKXĐ:\(x\ge2\)

\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)

b,ĐKXĐ:\(x\in R\)

\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

c, ĐKXĐ:\(x\ge0\)

\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)

 

Đinh Hoàng Nhất Quyên
Xem chi tiết
Gia Huy
3 tháng 9 2023 lúc 15:06

\(\sqrt{\left(x^2-7\right)^2}=10\\ \Leftrightarrow\left|x^2-7\right|=10\left(1\right)\)

Nếu \(x^2\ge7\Leftrightarrow x\ge\sqrt{7}\) thì:

(1) \(\Leftrightarrow x^2-7=10\)

\(\Leftrightarrow x^2=10+7=17\\ \Leftrightarrow x=\left[{}\begin{matrix}\sqrt{17}\left(nhận\right)\\-\sqrt{17}\left(loại\right)\end{matrix}\right.\)

Nếu \(x^2< 7\Leftrightarrow x< \sqrt{7}\) thì:

(1) \(\Leftrightarrow7-x^2=10\)

\(\Leftrightarrow x^2=7-10=-3\left(loại\right)\)

Vậy PT có nghiệm \(x=\sqrt{17}\)

Nguyễn Lê Phước Thịnh
3 tháng 9 2023 lúc 15:30

\(\sqrt{\left(x^2-7\right)^2}=10\)

=>|x^2-7|=10

=>x^2-7=10 hoặc x^2-7=-10

=>x^2=17(nhận) hoặc x^2=-3(loại)

=>x^2=17

=>\(x=\pm\sqrt{17}\)

Julian Edward
Xem chi tiết
Nguyễn Thị Ngọc Thơ
1 tháng 10 2019 lúc 22:41

Đệ biết là có người làm câu c,d nên xin xí câu e :3

ĐK: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)

\(PT\Leftrightarrow5+\sqrt{x+1}=7\left(x-2\right)\)

\(\Leftrightarrow\sqrt{x+1}=7x-19\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=49x^2-266x+361\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\)

\(\Rightarrow x=3\left(tm\right)\)

Nguyễn Việt Lâm
1 tháng 10 2019 lúc 22:35

a/ \(\Leftrightarrow\left\{{}\begin{matrix}9-2x\ge0\\x^2-4x-12=\left(9-2x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{9}{2}\\3x^2-32x+93=0\end{matrix}\right.\)

Phương trình vô nghiệm

b/ \(\Leftrightarrow\left(x+1\right)\sqrt[3]{15x^2-x-1}-\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\sqrt[3]{15x^2-x-1}-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt[3]{15x^2-x-1}-x+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt[3]{15x^2-x-1}=x-1\)

\(\Leftrightarrow15x^2-x-1=x^3-3x^2+3x-1\)

\(\Leftrightarrow x^3-18x^2+4x=0\)

\(\Leftrightarrow x\left(x^2-18x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\pm\sqrt{77}\\\end{matrix}\right.\)

Nguyễn Việt Lâm
1 tháng 10 2019 lúc 22:44

c/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow2\left(x-1\right)\sqrt{2x-1}-6\left(x-1\right)=0\)

\(\Leftrightarrow2\left(x-1\right)\left(\sqrt{2x-1}-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{2x-1}-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\2x-1=9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

d/ ĐKXĐ: \(1\le x< 3\)

\(\Leftrightarrow\sqrt{-x^2+4x-3}-1=2x-6\)

\(\Leftrightarrow\sqrt{-x^2+4x-3}=2x-5\) (\(x\ge\frac{5}{2}\))

\(\Leftrightarrow-x^2+4x-3=\left(2x-5\right)^2\)

\(\Leftrightarrow5x^2-24x+28=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2< \frac{5}{2}\left(l\right)\\x=\frac{14}{5}\end{matrix}\right.\)

e/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow5+\sqrt{x+1}=7x-14\)

\(\Leftrightarrow\sqrt{x+1}=7x-19\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=\left(7x-19\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=\frac{120}{49}< \frac{19}{7}\left(l\right)\end{matrix}\right.\)

bá đạo
Xem chi tiết
Nguyễn Quốc Khánh
3 tháng 1 2016 lúc 11:04

Đăth 2 ẩn phụ

 

Lương Thị Lan
3 tháng 1 2016 lúc 10:57

?

Nguyễn Quốc Khánh
3 tháng 1 2016 lúc 10:58

Làm theo đặt ẩn phụ bạn à.

Nếu thấy bài làm của mình đúng thì tick nha bạn.Chúc bạn một năm mới hanh phúc,vui vẻ,học giỏi,mạnh khoẻ nha...

Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
10 tháng 10 2020 lúc 5:54

5) \(ĐK:x\ge-\frac{3}{2}\)

\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)

\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)

(không có nghiệm thực)

Vậy phương trình có 1 nghiệm duy nhất là 3

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
10 tháng 10 2020 lúc 5:55

1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)

Đặt \(t=\sqrt{x^2+3x},t\ge0\)

Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)

giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
10 tháng 10 2020 lúc 8:02

3) \(x^2+\sqrt{2x^2+4x+3}=6-2x\Leftrightarrow-\sqrt{2x^2+4x+3}=x^2+2x-6\)\(\Leftrightarrow\left(2x^2+4x+3\right)-15=-2\sqrt{2x^2+4x+3}\)

Đặt \(\sqrt{2x^2+4x+3}=t\)(t > 0) thì phương trình trở thành \(t^2-15=-2t\Leftrightarrow t^2+2t-15=0\Leftrightarrow\left(t+5\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=-5\left(L\right)\\t=3\left(tm\right)\end{cases}}\)

Với t = 3 thì \(\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x+3=9\Leftrightarrow2x^2+4x-6=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)Vậy phương trình có tập nghiệm S = {1; -3}

Khách vãng lai đã xóa