Cho tam giác MNP vuông tại M có MN = 4cm,MP = 3cm. Tính độ dài cạnh NP.
:))))
Cho tam giác MNP vuông tại M, có MN = 3cm, MP = 4cm,
tia phân giác NI của góc N( I thuộc MP). Vẽ IE vuông góc với NP tại E.
a. Tính độ dài đoạn thẳng NP.
b. Chứng minh: tam giác MNI bằng tam giác ENI
c. Chứng minh: NI là đường trung trực của đoạn thẳng ME.
d. Gọi F là giao điểm của tia NM và EI. Chứng minh NI vuông góc với FP.
Bài 4. (0,5điểm) Cho đa thức f(x) = ax3 + bx2 +cx + d trong đó a,b,c,d là các số nguyên và thỏa mãn 7a +2b + c = 0
Chứng minh rằng f(-1).f(3) là bình phương của một số nguyên
Cho tam giác MNP vuông tại M vẽ đường cao MH cho MN =3cm , MP=4cm a) chứng minh tam giác HNM đồng dạng với tam giác MNP b)tính độ dài NP,MH,NH ? GIÚP MÌNH VỚI Ạ !
a)xét \(\Delta HMN\) và \(\Delta MNP \)
\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)
\(\widehat{M}\) ( góc Chung)\)
\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)
\(\)
b) Theo ddịnh lí Py-ta-go, ta có:
\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)
\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)
) Theo ddịnh lí Py-ta-go, ta có:
\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)
Cho tam giác MNP vuông tại M,MN=3cm,MP=4cm. I là trung điểm NP. Qua I kẻ đường thẳng vuông góc với NP cắt MP,MN lần lượt ở D và E.
a) tam giác MNP đồng dạng với tam giác IDP
b) Tính các cạnh của tam giác IDP
Cho tam giác ABC = tam giác MNP . Biết AB + BC = 7cm , MN-NP = 3cm, MP =4cm. Tính độ dài các cạnh của mỗi tam giác
AB= 5cm
BC= 2cm
AC=4cm
MN=5cm
NP=2cm
MP=4cm
Cho tam giác MNP cân tại M có M<90°,từ M kẻ MH vuông góc với NP(H thuộc NP)
a) chứng minh tam giác MNH = tam giác MPH
b) tính độ dài cạnh MN, biết MH = 4cm và NH = 3cm
c) kẻ ND vuông góc với MP tại D,PE vuông góc với MN tại E. Gọi I là giao điểm của ND và PE.chứng minh MI là phân giác của góc NMP
d) chứng minh 3 điểm M,I,H thẳng hàng
Ghi đầy đủ mà nó hiện lên có 1 khúc,khóc ẻ
Cho tam giác MNP vuông tại M có MN = 3cm, MP = 4cm, NP = 5cm. a) Tính các tỉ số lượng giác của MNP · ? b) Kẻ đường cao MH của tam giác MNP . Tính MH, NH?
a: Xét ΔMNP vuông tại M có
\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)
\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)
\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)
\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)
Cho tam giác ABC có độ dài các cạnh A B = 4 c m , A C = 5 c m v à B C = 6 c m và tam giác MNP có độ dài các cạnh M N = 3 c m , M P = 2 c m , N P = 2 , 5 c m thì:
A. S A B C S M N P = 4
B. S M N P S A B C = 1 2
C. S M N P S A B C = 1 3
cho tam giác MNP vuông tại M . MN = 4cm, MP = 3cm. đường cao MI : a) Cm tam giác MNP và tam giác INM đồng dang => MN mũ 2 = NP . NI; b) tính độ dài NI và IP : c) gọi NE là tia phân giác của góc MNP . K là giao điểm NE và MI. cm EM/EP, NI/MN ; d) kẻ IH vuong góc với MN tại H. tính diện tích tam giác IMH
Cho tam giác MNP có MN=3cm MP= 4cm NP=5cm a, Chứng tỏ rằng tam giác MNP vuông tại M b, vẽ tia phân giác ND(D thuộc MP) từ D vẽ DE vuông góc với NP (E thuộc NP) chứng minh DM=DE c, ED cắt MN tại F chứng minh DE
a: NP^2=MN^2+MP^2
=>ΔMNP vuông tại M
b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
góc MND=góc END
=>ΔNMD=ΔNED
=>DM=DE
Cho tam giác MNP vuông tại M có MN= 3cm , MP= 4cm . Tia phân giác góc M cắt ND tại I, từ I kẻ IH vuông góc MP ( H thuộc MP) A, chứng minh tam giác MNP đồng dạng tam giác HIP B, tính tỉ số IN/IP độ dài IN, IP và tính IH C, tính tỉ số S mni/S hid
a: Xét ΔMNP vuông tại M và ΔHIP vuông tại H có
góc P chung
=>ΔMNP đồng dạng với ΔHIP
b: IN/IP=MN/MP=3/4
=>IN/3=IP/4=(IN+IP)/(3+4)=5/7
=>IN=15/7cm; IP=20/7cm
IH//MN
=>IH/MN=PI/PN
=>IH/3=20/7:5=4/7
=>IH=12/7cm