Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 10 2018 lúc 17:31

Đáp án: C

Nguyễn Phúc Trường An
Xem chi tiết

\(mx^2-2mx-1+2m< =0\)(1)

TH1: m=0

BPT (1) sẽ trở thành

\(0\cdot x^2-2\cdot0\cdot x-1-2\cdot0< =0\)

=>-1<=0(luôn đúng)

=>Nhận

TH2: m<>0

\(\text{Δ}=\left(-2m\right)^2-4\cdot m\cdot\left(2m-1\right)\)

\(=4m^2-8m^2+4m=-4m^2+4m\)

Để BPT (1) luôn đúng với mọi x thuộc R thì

\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-4m^2+4m< =0\\m< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-4m\left(m-1\right)< =0\\m< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-1\right)>=0\\m< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>=1\\m< =0\end{matrix}\right.\\m< 0\end{matrix}\right.\)

=>m<0

Do đó: m<=0

mà \(m\in Z;m\in\left(-10;10\right)\)

nên \(m\in\left\{-9;-8;...;-1;0\right\}\)

=>Số giá trị nguyên thỏa mãn là 10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 9 2019 lúc 15:51

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 8 2017 lúc 8:30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 4 2017 lúc 14:30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 11 2019 lúc 15:32

Bất phương trình x2-3x+2  ≤ 0 ⇔ 1 ≤ x ≤ 2

Bất phương trình mx2+(m+1) x+m+1   ≥ 0  

Xét hàm số  f ( x ) = - x - 2 x 2 + x + 1   ,   1 ≤ x ≤ 2

Có  f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2   > 0   ∀ x ∈ 1 ; 2

Yêu cầu bài toán  ⇔ m ≥ m a x [ 1 ; 2 ]   f ( x ) ⇔ m ≥ - 4 7

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2017 lúc 14:17

Giải bất phương trình x2- 3x+ 2≤ 0 ta được 1≤x≤2.

Bất phương trình  mx2+ (m+ 1) x+ m+1≥0

⇔ m ( x 2 + x + 1 ) ≥ - x - 2 ⇔ m ≥ - x - 2 x 2 + x + 1

Xét hàm số f ( x ) = - x - 2 x 2 + x + 1   với 1≤ x≤ 2

Có đạo hàm  f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2 > 0 , ∀ x ∈ 1 ; 2

Yêu cầu bài toán  ⇔ m ≥ m a x [ 1 ; 2 ]   f ( x ) ⇔ m ≥ - 4 7

Chọn C.

Minz Ank
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2017 lúc 9:15

Đáp án: A

Ngô Thành Chung
Xem chi tiết
Akai Haruma
13 tháng 3 2021 lúc 12:35

Lời giải:

PT có 2 nghiệm pb khi:

$\Delta'=m^2+m(2m+1)>0\Leftrightarrow m(3m+1)>0\Leftrightarrow m>0$ hoặc $m< \frac{-1}{3}(*)$

Theo định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{-(2m+1)}{m}\end{matrix}\right.\) . Khi đó:

$x_1^2+2x_1x_2^2+3x_2^2=4x_1+5x_2-1$

$\Leftrightarrow (x_1+x_2)^2+2x_2^2=4(x_1+x_2)+x_2-1$

$\Leftrightarrow 4+2x_2^2=7+x_2$

$\Leftrightarrow 2x_2^2-x_2-3=0$

$\Leftrightarrow x_2=\frac{3}{2}$ hoặc $x_2=-1$

$x_2=\frac{3}{2}$ thì $x_1=\frac{1}{2}$

$\frac{-(2m+1)}{m}=x_1x_2=\frac{3}{4}\Leftrightarrow m=\frac{-4}{11}$
$x_2=-1$ thì $x_1=3$

$\frac{-(2m+1)}{m}=x_1x_2=-3\Leftrightarrow m=1$

(hai giá trị trên đều thỏa mãn)