Tìm x:
\(\sqrt{9x-27}+\sqrt{25x-75}=16\)\(16\)
Bài 1: Tìm x, biết
a)\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
c)\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7
\(\sqrt{25x+25}-\sqrt{16x+16}+\sqrt{9x+9}-\sqrt{4x+4}+\sqrt{x+1}=27\)
ĐKXĐ: \(x\ge-1\)
\(\sqrt{25\left(x+1\right)}-\sqrt{16\left(x+1\right)}+\sqrt{9\left(x+1\right)}-\sqrt{4\left(x+1\right)}+\sqrt{x+1}=27\)
\(\Leftrightarrow5\sqrt{x+1}-4\sqrt{x+1}+3\sqrt{x+1}-2\sqrt{x+1}+\sqrt{x+1}=27\)
\(\Leftrightarrow3\sqrt{x+1}=27\)
\(\Leftrightarrow\sqrt{x+1}=9\)
\(\Rightarrow x+1=81\)
\(\Rightarrow x=80\) (thỏa mãn)
tìm x
\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow2\cdot3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\cdot\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
Tìm x
a) \(x+1-2\sqrt{x+1}=0\)
b) \(2x-4-\sqrt{x-2}=0\)
c) \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20 \)
\(a)ĐK:x\ge-1\\ \Leftrightarrow x+1=2\sqrt{x+1}\\ \Leftrightarrow x^2+2x+1=4x+4\\ \Leftrightarrow x^2+2x-4x+1-4=0\\ \Leftrightarrow x^2-2x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{3;-1\right\}\)
\(b)ĐK:x\ge2\\ \Leftrightarrow2x-4=\sqrt{x-2}\\ \Leftrightarrow4x^2-16x+16=x-2\\ \Leftrightarrow4x^2-16x-x+16+2=0\\ \Leftrightarrow4x^2-17x+18=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{9}{4};2\right\}\)
\(c)ĐK:x\ge3\\ \Leftrightarrow2\sqrt{9\left(x-3\right)}-\dfrac{1}{5}\sqrt{25\left(x-3\right)}-\dfrac{1}{7}\sqrt{49\left(x-3\right)}=20\\ \Leftrightarrow2.3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=20\\ \Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\\ \Leftrightarrow4\sqrt{x-3}=20\\ \Leftrightarrow\sqrt{x-3}=5\\ \Leftrightarrow x-3=25\\ \Leftrightarrow x=25+3\\ \Leftrightarrow x=28\left(tm\right)\)
Vậy \(S=\left\{28\right\}\)
Giải các phương trình sau:
a. \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)
b. \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
a) Ta có: \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)
\(\Leftrightarrow5\sqrt{x+3}+6\sqrt{x+3}-5\sqrt{x+3}=18\)
\(\Leftrightarrow\sqrt{x+3}=3\)
\(\Leftrightarrow x+3=9\)
hay x=6
b) Ta có: \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)
\(\Leftrightarrow-3\sqrt{x-2}=8\)(Vô lý)
\(\sqrt{25x+5}+\sqrt{45}\sqrt{20x+4}-\sqrt{\dfrac{5x+1}{16}}=\dfrac{27\sqrt{5}}{4}\)
tìm x
=>\(\sqrt{5x+1}\left(\sqrt{5}-6\sqrt{5}-\dfrac{1}{4}\right)=\dfrac{27\sqrt{5}}{4}\)
=>căn 5x+1=\(\dfrac{27\sqrt{5}}{28\sqrt{5}-1}\)
=>5x+1=0,96
=>5x=-0,04
=>x=-0,04/5=-0,008
\(\sqrt{4x-12}\)-\(\sqrt{9x-27}\)+\(\sqrt{\dfrac{25x-75}{\text{4}}}\)-3=0
\(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\left(dkxd:x\ge3\right)\)
\(\Leftrightarrow\sqrt{4\left(x-3\right)}-\sqrt{9\left(x-3\right)}+\sqrt{\dfrac{25}{4}\cdot\left(x-3\right)}=3\)
\(\Leftrightarrow2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}=3\)
\(\Leftrightarrow\dfrac{3}{2}\sqrt{x-3}=3\)
\(\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\)
\(\Leftrightarrow x=7\left(tmdk\right)\)
Vậy $x=7$.
$Toru$
giải phương trình:
a, \(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\)
b, 4x-10.2x+16=0
c, x(x-1)(x+4)(x+5)=84
a: \(\Leftrightarrow5\sqrt{x+3}-4\sqrt{x+3}=3\sqrt{x-2}-3\sqrt{x-2}+2\)
\(\Leftrightarrow\sqrt{x+3}=2\)
=>x+3=4
hay x=1
c: \(\Leftrightarrow\left(x^2+4x\right)\left(x^2+4x-5\right)=84\)
\(\Leftrightarrow\left(x^2+4x\right)^2-5\left(x^2+4x\right)-84=0\)
\(\Leftrightarrow\left(x^2+4x\right)^2-12\left(x^2+4x\right)+7\left(x^2+4x\right)-84=0\)
\(\Leftrightarrow x^2+4x-12=0\)
=>(x+6)(x-2)=0
=>x=-6 hoặc x=2
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)