Những câu hỏi liên quan
Fire Sky
Xem chi tiết
tth_new
9 tháng 8 2019 lúc 18:19

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

tth_new
9 tháng 8 2019 lúc 18:29

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

tth_new
14 tháng 11 2019 lúc 13:39

Cách nữa cho bài 2:

2a) Ta có: \(4\left(a^2+1+2\right)\left(1+1+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2\)

Hay \(4\left(a^2+3\right)\left(2+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2=VP\)

Như vậy ta quy bài toán về chứng minh: \(\left(b^2+3\right)\left(c^2+3\right)\ge4\left(2+\frac{\left(b+c\right)^2}{2}\right)\)

\(\Leftrightarrow b^2c^2+b^2+c^2+1\ge4bc\Leftrightarrow\left(bc-1\right)^2+\left(b-c\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi a = b = c = 1

b) Áp dụng BĐT Bunhiacopxki:\(\left(a^2+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+b^2+c^2+\frac{1}{2}\right)\ge\frac{1}{4}\left(a+b+c+1\right)^2\)

\(\Rightarrow\frac{5}{4}\left(a^2+1\right)\left(b^2+c^2+\frac{3}{4}\right)\ge\frac{5}{16}\left(a+b+c+1\right)^2\)

Từ đó ta có thể quy bài toán về chứng minh: \(\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(b^2+c^2+\frac{3}{4}\right)\)

...

Bài 3:Sửa đề a, b, c >0

Có:  \(\frac{a^3}{b^2}+\frac{a^3}{b^2}+b\ge3\sqrt[3]{\frac{a^6}{b^3}}=\frac{3a^2}{b}\)

Tương tự: \(\frac{2b^3}{c^2}+c\ge\frac{3b^2}{c};\frac{2c^3}{a^2}+a\ge\frac{3c^2}{a}\)

Cộng theo vế 3 BĐT trên: \(2\left(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\right)+a+b+c\ge3\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\)

\(=2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\)

\(\ge2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+a+b+c\)

Từ đó ta có đpcm.

Khách vãng lai đã xóa
trần xuân quyến
Xem chi tiết
Tú Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:26

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

a/ Từ BĐT ban đầu ta có:

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:31

b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:

\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)

c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:

\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:

\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)

Mặt khác ta cũng có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:33

e/ Chia 2 vế của BĐT ở câu c cho 9 ta được:

\(\frac{\left(a+b+c\right)^2}{9}\ge\frac{ab+bc+ca}{3}\)

Khai căn 2 vế: \(\Rightarrow\frac{a+b+c}{3}\ge\sqrt{\frac{ab+bc+ca}{3}}\)

f/ Áp dụng BĐT ở câu d:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)=abc\) (do \(a+b+c=1\))

Khách vãng lai đã xóa
Tú Nguyễn
Xem chi tiết
tthnew
13 tháng 2 2020 lúc 18:10

a)Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\ge\frac{9\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{\left(a+b+c\right)^2}=\left(a+b+c\right)^2\)

Đẳng thức xảy ra khi \(a=b=c\)

b) \(VT-VP=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)

Đẳng thức xảy ra khi \(a=b=c\)

c) Theo câu b và BĐT Cauchy-Schwarz:

\(\Rightarrow3.3\left(a^3+b^3+c^3\right)\ge3\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(\ge3\left(a+b+c\right)\left[\frac{\left(a+b+c\right)^2}{3}\right]=\left(a+b+c\right)^3\)

Đẳng thức xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Trần Anh Thơ
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 6 2020 lúc 19:37

\(\Leftrightarrow\frac{\left(b+c\right)^2+a^2-2a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{\left(a+c\right)^2+b^2-2b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{\left(b+a\right)^2+c^2-2c\left(a+b\right)}{\left(a+b\right)^2+c^2}\ge\frac{3}{5}\)

\(\Leftrightarrow3-2\left(\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\right)\ge\frac{3}{5}\)

\(\Leftrightarrow\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\le\frac{6}{5}\)

Chuẩn hóa \(a+b+c=3\) (hay đặt \(x=\frac{3a}{a+b+c};y=\frac{3b}{a+b+c};z=\frac{3c}{a+b+c}\))

BĐT cần chứng minh trở thành:

\(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}+\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}+\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{6}{5}\)

Ta có đánh giá: \(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}\le\frac{9a+1}{25}\) ; \(\forall a\in\left(0;3\right)\)

\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\) (luôn đúng)

Tương tự: \(\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}\le\frac{9b+1}{25};\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{9c+1}{25}\)

Cộng vế với vế: \(VT\le\frac{9\left(a+b+c\right)+3}{25}=\frac{30}{25}=\frac{6}{5}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Thiều Công Thành
Xem chi tiết
Không Tên
Xem chi tiết
Lê Ánh
Xem chi tiết
Phước Nguyễn
26 tháng 3 2016 lúc 17:20

Chịu bài này rồi!

Trần Thùy Trang
26 tháng 3 2016 lúc 17:34

mk mới hk lp 6 , bài này bó tay ko giải đc

Lê Ánh
26 tháng 3 2016 lúc 18:49

Đề thi HSG á :v

Minh Hoàng Nguyễn
Xem chi tiết
Akai Haruma
30 tháng 5 2020 lúc 12:35

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)

\(=[a(a+b+c)]^2\)

\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$