b) Tìm m để phương trình (m+2)x - 5 =4 nhận x=3 là nghiệm
Cho phương trình x2 + (m-4)x -m + 3 =0, m là tham số
1) Tìm m để phương trình nhận x = 5 + \(6\sqrt{3}\) là nghiệm. Tìm nghiệm còn lại
2) Tìm m để phương trình có hai nghiệm x1 , x2 thoả mãn 3x1 - x2 = 2
2: \(\text{Δ}=\left(m-4\right)^2-4\left(-m+3\right)\)
\(=m^2-8m+16+4m-12\)
\(=m^2-4m+4=\left(m-2\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x_1-x_2=2\\x_1+x_2=-m+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=6-m\\x_2=3x_1-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{6-m}{4}\\x_2=\dfrac{3\left(6-m\right)}{4}-2=\dfrac{18-3m-8}{4}=\dfrac{10-3m}{4}\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=-m+3\)
\(\Leftrightarrow\left(m-6\right)\left(3m-10\right)=16\left(-m+3\right)\)
\(\Leftrightarrow3m^2-30m-18m+60+16m-48=0\)
\(\Leftrightarrow3m^2-32m+12=0\)
\(\text{Δ}=\left(-32\right)^2-4\cdot3\cdot12=880>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{32-4\sqrt{55}}{6}=\dfrac{16-2\sqrt{55}}{3}\\x_2=\dfrac{16+2\sqrt{55}}{3}\end{matrix}\right.\)
a)x4+3/5 - 6x-2/7 = 5x+4/3 +3
b) x-3/x-2 + x-2/x-4 = 3.1/5
c)3/1-4x = 2/4x+1 - 8+6x/16x^2-1
d) x+1/x - x+5/x-2 = 1/x^2 - 2x
bài 2:
a)Tìm m để phương trình 3x+m = x.4 nhận x=-2 là nghiệm
b)Tìm m để phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm x=2
c)Tìm m để phương trình 2mx-3=4x có nghiệm
d)Tìm m để phương trình mx=2-x vô nghiệm
e)Tìm a và b để phương trình a(2x=3)=x+b có nghiệm , cô nghiệm, vô số nghiệm
Bài 1:
c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)
Suy ra: \(-12x-3=8x-2-6x-8\)
\(\Leftrightarrow-12x-3-2x+10=0\)
\(\Leftrightarrow-14x+7=0\)
\(\Leftrightarrow-14x=-7\)
\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
cho phương trình (m+2)x-5=4. tìm m để
Phương tình nhận x=3 là nghiệm
phương trình vô nghiệm
a) Thay x=3 vào phương trình ta có:
(m+2)3-5=4
<=> 3m+6-5-4=0
<=> 3m-3=0
<=> m=1
Vậy phương trình có nghiệm x=3 khi m=
m=1
cách làm bạn dưới làm đúng
a,Thay x = 3
3(m+2)-5=4
m+2 = 3
m=1
vậy .....
b, (m+2)x - 5 =4
<=>(m+2)x=9
+ Với m = -2
=> 0x=9( vô lí)
=> Vô nghiệm
+ Với m khác -2
=> x= \(\frac{9}{m+2}\)
Vậy m = -2 thì pt vô nghiệm
bài 5 xác định m để phương trình :3x+m-x-1=0 nhận x=-3 là nghiệm
bài 6 tìm m để phương trình :(2m-4).x+6=0 có nghiệm x=1
Bài 5 :
Thay \(x=-3\) vào pt : \(3x+m-x-1=0\)
\(\Leftrightarrow3\left(-3\right)+m-\left(-3\right)-1=0\)
\(\Leftrightarrow-9+m+3-1=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Vậy \(m=7\) để pt nhận \(x=-3\) là nghiệm
Bài 6 :
Thay \(x=1\) vào pt : \(\left(2m-4\right)x+6=0\)
\(\Leftrightarrow2mx-4x+6=0\)
\(\Leftrightarrow2m-4+6=0\)
\(\Leftrightarrow2m+2=0\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\) để pt nhận \(x=1\) là nghiệm
a.Tìm m để phương trình \(3x^2+mx-35=0\) có 1 nghiệm là 7.Tìm nghiệm còn lại?
b.Tìm m để phương trình \(x^2-13x+m=0\) có 1 nghiệm là -5.Tìm nghiệm còn lại?
c.Tìm m để phương trình \(2x^2-\left(m+4\right)x+m=0\) có 1 nghiệm là -3.Tìm nghiệm còn lại?
b: Thay x=-5 vào pt, ta được:
\(m+25+65=0\)
hay m=-90
Theo đề, ta có: \(x_1+x_2=13\)
nên \(x_2=18\)
c: Thay x=-3 vào pt, ta được:
\(18+3\left(m+4\right)+m=0\)
=>4m+30=0
hay m=-15/2
Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)
hay \(x_2=-1.25\)
Tìm m để phương trình 2mx-3=3x+m. (1) a, Tìm m để phương trình (1) nhận x=1/2 làm nghiệm b, Tìm m để phương trình (1) có nghiệm duy nhất, tính nghiệm theo m
a)Bạn chỉ cần bê 1/2 vào tìm m bình thường
b)nx-2+n=3x
\(\Leftrightarrow\left(m-3\right)x+m-2=0\)
Để pt có nghiệm duy nhất thì m-3 khác 0 suy ra m khác 0
Khi đó nghiệm duy nhất là x=-m+2/m-3
tìm m để phương trình (m2-1)x+2=m-1 nhận x-2 là nghiệm
Tìm m để pt 3x2+4mx=8 có nghiệm x=-1
Tìm m để pt (2m+3)x-5-(m+2)-x có nghiệm là x=3
Gig gấp vs các bạn !!!
Kiểm tra giúp mình yêu cầu thứ nhất nhé!
Có thể bạn tìm:
"Đề: Tìm m để phương trình (m2-1)x+2=m-1 nhận x=2 là nghiệm.
Giải: Thế x=2 vào phương trình đã cho, ta suy ra (m2-1).2+2=m-1 (vô nghiệm).
Không có giá trị nào của m để phương trình đã cho nhận x=2 là nghiệm. -Hết-".
Thế x=-1 vào phương trình đã cho, ta suy ra 3.(-1)2+4m.(-1)=8 \(\Rightarrow\) m=-5/4.
Bạn xem giúp mình yêu cầu cuối cùng nha!
Có thể bạn tìm:
"Đề: Tìm m để phương trình (2m+3)x-5=(m+2)-x có nghiệm là x=3.
Giải: Thế x=3 vào phương trình đã cho, ta suy ra (2m+3).3-5=(m+2)-3 \(\Rightarrow\) m=-1. -Hết-".
Giải phương trình: (m-5)x +4m2 =10
a) giải phương trình khi m = -1
b) Tìm m để phương trình nhận x= -2 là nghiệm
<=> (m-5)x = 10 - 4m2
TH1: m - 5 = 0 <=> m = 5
Thay m = 5, ta có :
0x = 10 - 4.52
<=> 0x = -90 (vô lí)
Vậy với m =5, phương trình vô nghiệm
TH2: m-5 \(\ne\)0 <=> \(m\ne5\)
Phương trình có nghiệm duy nhất : \(x=\frac{10-4m^2}{m-5}\)
x^2 - 2(m-2)x + m^2 - 3m + 5=0.
Giải phương trình với m=3
b) Tìm giá trị của m để phương trình có nghiệm No =-4
c) Tìm m để phương trình có nghiệm kép