Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
9A Lớp
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 11 2021 lúc 14:24

Bổ sung điều kiện: \(x,y>0\)

\(A=\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{1}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x^2+y^2}{9xy}+\dfrac{xy}{x^2+y^2}\right)\)

Áp dụng BĐT cosi:

\(A\ge\dfrac{8}{9}\cdot2\sqrt{\dfrac{xy}{xy}}+2\sqrt{\dfrac{xy\left(x^2+y^2\right)}{9xy\left(x^2+y^2\right)}}=\dfrac{16}{9}+\dfrac{2}{3}=\dfrac{22}{9}\)

Vậy \(A_{min}=\dfrac{22}{9}\Leftrightarrow x=y\)

Trương Hải Yến
Xem chi tiết
Kurosaki Akatsu
3 tháng 1 2017 lúc 14:07

Gọi \(A=3.\left|x+\frac{-2}{5}\right|+\frac{5}{2}\)

Ta có :   \(\left|x+\frac{-2}{3}\right|\ge0\)

         \(3.\left|x+\frac{-2}{3}\right|\ge0\)

\(3.\left|x+\frac{-2}{3}\right|+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow Min_A=\frac{5}{2}\)

\(\Leftrightarrow3.\left|x+\frac{-2}{3}\right|=0\)

\(\Leftrightarrow\left|x+\frac{-2}{5}\right|=0\)

\(\Leftrightarrow x+\frac{-2}{5}=0\)

\(\Leftrightarrow x=\frac{2}{5}\)

Yen Nhi
26 tháng 3 2022 lúc 20:56

`Answer:`

1. 

Do \(\left|x-\frac{2}{5}\right|\ge0\forall x\)

\(\Rightarrow3.\left|x-\frac{2}{5}\right|\ge0\forall x\)

\(\Rightarrow3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\ge\frac{5}{2}\forall x\)

Dấu "=" xảy ra khi \(\left|x-\frac{2}{5}\right|=0\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Vậy \(3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\) đạt giá trị nhỏ nhất \(=\frac{5}{2}\Leftrightarrow x=\frac{2}{5}\)

2. 

Do \(\left|x-\frac{1}{2}\right|\ge0\forall x\)

\(\Rightarrow\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow A\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(\left|x-\frac{1}{2}\right|=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy giá trị nhỏ nhất của \(A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

Khách vãng lai đã xóa
Vũ Thảo Minh
Xem chi tiết
nguyenduythuan
29 tháng 6 2017 lúc 9:50

Có 3x-4/x+2=2x-2

Để A đạt min khi

2x-2>=-4

=>2x>=-2

=>X=-1

Hoang Yen Pham
Xem chi tiết
Akai Haruma
16 tháng 7 2021 lúc 23:12

Lời giải:

a. Áp dụng BĐT Cô-si:

$x^4+9\geq 6x^2$

$y^4+9\geq 6y^2$

$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$

$A+18\geq 36$

$A\geq 18$

Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$

b.

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$

$\Leftrightarrow 12\geq (x+y)^2$

$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 6\geq 2C$

$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$

Hứa Minh Tuấn
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 21:46

Đặt \(x+2=t\ne0\Rightarrow x+1=t-1\)

\(A=\dfrac{x+1}{\left(x+2\right)^2}=\dfrac{t-1}{t^2}=-\dfrac{1}{t^2}+\dfrac{1}{t}=-\left(\dfrac{1}{t}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(A_{max}=\dfrac{1}{4}\) khi \(t=2\) hay \(x=0\)

Phạm Thị Mỹ Duyên
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 20:26

Đặt \(P=x+y\Rightarrow P^2=\left(x+y\right)^2\le2\left(x^2+y^2\right)=8\)

\(\Rightarrow-2\sqrt{2}\le P\le2\sqrt{2}\)

\(P_{min}=-2\sqrt{2}\) khi \(x=y=-\sqrt{2}\)

\(P_{max}=2\sqrt{2}\) khi \(x=y=\sqrt{2}\)

19.8A Trà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 12 2021 lúc 20:31

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

Lung Thị Lung Linh
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Ngọc Dạ Nhật Băng
8 tháng 3 2017 lúc 19:45

a,Vì (x-2)^2>=0 với mọi giá trị của x thuộc R

nên GTNN của (x-2)^2 là 0 khi x=2

b,Vì (2x-1)^2>=0 với mọi giá trị của x thuộc R

Nên (2x-1)^2+1>=1

GTNN của (2x-1)^2+1 là 1 khi 2x-1=0 hay x=1/2

c,GTNN của (2x+1)^4-3 là -3 khi x=-1/2

Bạn trình bày như các câu trên nha

d, (x^2-9)^4 >=0

/y-4/>=0

suy ra (x^2-9)^4+/y-4/-1>=1

GTNN của (x^2-9)^4+/y-4/-1 là -1 khi x^2-9=0 và y-4=0

Hay x=+-3 và y=4

Dương Nguyễn
8 tháng 3 2017 lúc 19:52

thank nhưng bn ơi phần d y=2 nhỉ