Tìm giá trị lớn nhất của biểu thức: M =\(2004-x^2-2y^2-2xy+6y^2\)
Tìm giá trị lớn nhất của biểu thức: M =\(2004-x^2-2y^2-2xy+6y^2\)
Bạn coi lại đề bài, sao có cả \(-2y^2\) và \(6y^2\) thế kia? Ko ai cho đề như vậy cả
\(M=2004-x^2-2y^2-2xy+6y\)
\(M=2013-\left(x^2+y^2+2xy\right)-\left(y^2-6y+9\right)\)
\(M=2013-\left(x+y\right)^2-\left(y-3\right)^2\le2013\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)
Tìm giá trị lớn nhất của N = 2004 – x2 – 2y2 -2xy +6y.
\(N=2013-\left(x^2+2xy+y^2\right)-\left(y^2-6x+9\right)\)
\(N=2013-\left(x+y\right)^2-\left(y-3\right)^2\le2013-0-0=2013\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}y-3=0\\x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3\\x+3=0\end{cases}}\Leftrightarrow x=-3;y=3\)
khó thế :Đ
tìm giá trị nhỏ nhất của biểu thức M=2x^2+2y^2-6x-6y+2xy+11
Lời giải:
$M=(x^2+y^2+2xy)+x^2+y^2-6x-6y+11$
$=(x+y)^2+x^2+y^2-6x-6y+11$
$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+5$
$=(x+y-2)^2+(x-1)^2+(y-1)^2+5\geq 0+0+0+5=5$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+y-2=x-1=y-1=0$
$\Leftrightarrow x=y=1$
Tìm giá trị nhỏ nhất của biểu thức:
\(M=5x^2+y^2-2x+2y+2xy+2004\)
\(M=5x^2+y^2-2x+2y+2xy+2004\)
\(=\left(x^2+2x+1\right)+2y\left(x+1\right)+y^2+4x^2-4x+1+2002\)
\(=\left(x+1\right)^2+2y\left(x+1\right)+y^2+\left(2x-1\right)^2+2002\)
\(=\left(x+1+y\right)^2+\left(2x-1\right)^2+2003\ge2002\) với mọi x,y
=> \(M_{min}=2002\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(M_{min}=2002\)
Cho x và y thỏa mãn : \(x^2+2xy+6x+6y+2y^2+8=0\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+2016
Giúp em với !
\(x^2+2xy+6x+6y+2y^2+8=0\\ \Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)
Ta có \(y^2\ge0\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\\ \Leftrightarrow\left(x+y+3\right)^2\le1\\ \Leftrightarrow\left|x+y+3\right|\le1\\ \Leftrightarrow-1\le x+y+3\le1\\ \Leftrightarrow2012\le B\le2014\)
\(B_{min}=2012\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2012\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)
\(B_{max}=2014\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2014\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
Cho x và y thỏa mãn x^2+2xy+6x+6y+2y^2+8=0
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+2018
đề bài sai r bn ơi phải là +10 chứ ko phải +8 đâu nhá
cho x va y thoa man x2+2xy+6x+6y+2y2+8=0.tìm giá trị lớn nhất và bé nhất của biểu thức B=x+y+2016
Cho x và y thỏa mãn: x2 + 2xy + 6x + 6y + 2y2 + 8 = 0.
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B = x + y + 2016.
cho x và y thỏa mãn :\(x^2+2xy+6x+6y+2y^2+8=0\)0
tìm giá trị nhỏ nhất và lớn nhất của biểu thức B=x+y+2016
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)
\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)
Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)
\(\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)
\(\Rightarrow2012\le x+y+2016\le2014\)
Vậy ta có :
+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)
+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)