Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Adorable Angel
Xem chi tiết
Nguyễn Thành Trương
26 tháng 1 2020 lúc 10:57

Theo đề bài ta có:\(\left\{ \begin{array}{l} 4 - \sqrt 2 = \sqrt 2 a + b\\ \sqrt 2 = 2a + b \end{array} \right.\) \(\Rightarrow HPT\) vô nghiệm

Không tìm được $a,b$ thỏa mãn

Khách vãng lai đã xóa
Trương Xuân	Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2023 lúc 21:19

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot\sqrt{2}+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\left(\sqrt{2}-2\right)=4-2\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=\dfrac{4-2\sqrt{2}}{\sqrt{2}-2}=-2\\b=\sqrt{2}+4\end{matrix}\right.\)

Phan Bao
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 16:04

a: Vì (d) đi qua A(1;2) và B(-1;-5) nên ta có hệ phương trình:

a+b+2=2 và -a+b+2=-5

=>a+b=0 và -a+b=-7

=>a=7/2 và b=-7/2

b: (d)//y=2x+1 nên a=2

=>y=2x+b+2

Thay x=2 và y=1 vào y=2x+b+2, ta được:

b+2+2*2=1

=>b+6=1

=>b=-5

Trương Xuân	Thành
Xem chi tiết

Đồ thị hàn số y = a\(x\) + b đi qua các điểm A (\(\sqrt{2}\); 4 - \(\sqrt{2}\)) vàB (2; \(\sqrt{2}\))

       Thay tọa độ điểm A, B vào pt đồ thị ta có:

        \(\left\{{}\begin{matrix}\sqrt{2}.a+b=4-\sqrt{2}\\2a+b=2+\sqrt{2}\end{matrix}\right.\) 

      Trừ vế cho vế ta có:  2a + b - (\(\sqrt{2}\)a + b) = 2 + \(\sqrt{2}\) - (4 - \(\sqrt{2}\))

         2a + b - \(\sqrt{2}\)a - b   =  -2 + 2\(\sqrt{2}\)

        2a - \(\sqrt{2}\)a             = - 2 + 2\(\sqrt{2}\)

        a.(2 - \(\sqrt{2}\))         =      -2 + 2\(\sqrt{2}\)

        a                       = (-2 + 2\(\sqrt{2}\)) : (2 - \(\sqrt{2}\))

         a  = \(\sqrt{2}\)

         b = 2 + \(\sqrt{2}\) -  2\(\sqrt{2}\) 

         b = 2 - \(\sqrt{2}\)  

                                                       

                                                          

                 

 

                       

                      

 

Huy Hoàng Nguyễn
Xem chi tiết
Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 11 2021 lúc 22:00

\(A\left(\sqrt{3}-\sqrt{2};1-\sqrt{6}\right)\in\left(d\right)\\ \Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)a+b=1-\sqrt{6}\left(1\right)B\left(\sqrt{2};2\right)\in\left(d\right)\\ \Leftrightarrow a\sqrt{2}+b=2\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a\sqrt{3}-a\sqrt{2}+b=1-\sqrt{6}\\a\sqrt{2}+b=2\end{matrix}\right.\)

Lấy 2 PT trừ nhau

\(\Leftrightarrow a\left(2\sqrt{2}-\sqrt{3}\right)=1+\sqrt{6}\\ \Leftrightarrow a=\dfrac{\sqrt{6}+1}{2\sqrt{2}-\sqrt{3}}=\dfrac{\left(\sqrt{6}+1\right)\left(2\sqrt{2}+\sqrt{3}\right)}{8-3}\\ \Leftrightarrow a=\dfrac{11\sqrt{2}+\sqrt{3}}{5}\\ \Leftrightarrow b=2-a\sqrt{2}=\dfrac{10-\sqrt{2}\left(11\sqrt{2}+\sqrt{3}\right)}{5}\\ \Leftrightarrow b=\dfrac{-12-\sqrt{6}}{5}\)

Lorina Macmillan
Xem chi tiết
Incursion_03
7 tháng 2 2019 lúc 17:00

Gọi đths y = ax + b là (d) 

Vì \(\left(\sqrt{2};4-\sqrt{2}\right)\in\left(d\right)\Rightarrow4-\sqrt{2}=a\sqrt{2}+b\)

vì \(\left(2;\sqrt{2}\right)\in\left(d\right)\Rightarrow\sqrt{2}=2a+b\)

Ta có hệ \(\hept{\begin{cases}a\sqrt{2}+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\sqrt{2}-2a=4-\sqrt{2}-\sqrt{2}\\2a+b=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\left(\sqrt{2}-2\right)=4-2\sqrt{2}\\2a+b=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=-2\\2.\left(-2\right)+b=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=-2\\b=4+\sqrt{2}\end{cases}}\)

Fan Sammy
Xem chi tiết
Store Vanni
Xem chi tiết
Đặng Nguyễn Thu Quỳnh
3 tháng 4 2020 lúc 9:38

a=-2 b xấp xỉ 5.4

Khách vãng lai đã xóa