Tìm nghiệm nguyên : \(3x^2-2y^2-5xy+x-2y-7=0\)
GPT nghiệm nguyên: 3x2-2y2-5xy+x-2y-7=0
Tìm các số x,y nguyên tm: \(3x^2-2y^2-5xy+x-2y-7=0\)
\(3x^2-2y^2-5xy+x-2y-7=0\\ \Leftrightarrow\left(3x^2-6xy\right)+\left(xy-2y^2\right)+\left(x-2y\right)=7\\ \Leftrightarrow3x\left(x-2y\right)+y\left(x-2y\right)+\left(x-2y\right)=7\\ \Leftrightarrow\left(x-2y\right)\left(3x+y+1\right)=7=\left(-1\right)\left(-7\right)=1\cdot7\)
Từ đó liệt kê ra nhé
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
giải phương trình nghiệm nguyên x^2-2xy^2-5xy-x-2y-7=0
Giải phương trình nghiệm nguyên \(3x^2+5xy-8x-2y^2-9y-4=0\)
Lời giải:
PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$
Coi đây là pt bậc 2 ẩn $x$. Khi đó, để pt có nghiệm nguyên thì:
$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t$ là số tự nhiên
$\Leftrightarrow 49y^2+28y+112=t^2$
$\Leftrightarrow (7y+2)^2+108=t^2$
$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$
Đến đây là dạng pt tích đơn giản. Bạn chỉ cần xét các TH thôi với $t+7y+2>0$ và $t+7y+2, t-7y-2$ có cùng tính chẵn lẻ.
Tìm nghiệm nguyên của các phương trình:
1) \(x^2y^2-2xy=x^2+16y^2\)
2) \(3x^2y^2+x^2+y^2=5xy\)
Tìm x,y nguyên biết
a) xy-x+z(y-1)=13
b) xy+3x-2y-7=0
c) 5xy-2y^2-2x^2= -2
Ai giúp mình mình tick cho nka
Cảm ơn nhiều
GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN:
\(3x^2-5xy-2y^2-4x+8y+3=0\)
tìm các cặp số nguyên (x;y) thỏa mãn : \(2x^2+2y^2+3x-6y=5xy-7\)
\(2x^2+2y^2+3x-6y=5xy-7\)
\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)
\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)
\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)
\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)
vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)
Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7
Tới đây bạn tự làm nhé