tim x biết
\(x=\frac{m}{n}+2017=\frac{n}{m}+2017=\frac{2017}{m+n}\)
tìm x biết
\(x=\frac{m}{n+2017}+\frac{n}{m+2017}=\frac{2017}{m+n}\) (m,n là hai số thực khác -2017 và \(m+n\ne0\))
*Nếu \(m+n+2017\ne0\)thì theo t/c dãy tỉ số bằng nhau, ta được:
\(x=\frac{m}{n+2017}=\frac{n}{n+2017}=\frac{2017}{m+n}=\frac{1}{2}\)
*Nếu \(m+n+2017=0\)thì \(\hept{\begin{cases}m+n=-2017\\m+2017=-n\\n+2017=-m\end{cases}}\)
\(\Rightarrow x=\frac{m}{-m}=\frac{n}{-n}=\frac{2017}{-2017}=-1\)
x=\(\frac{m}{n+2017}=\frac{n}{m+2017}\)\(=\frac{2017}{m+n}\)( m,n là 2 số thực khác -2017 và m+n khác 0)
Vì \(\frac{n}{m+2017}=\frac{2017}{m+n}\Rightarrow n\left(m+n\right)=2017\left(m+2017\right)\Rightarrow n=2017\)
\(\frac{m}{n+2017}=\frac{2017}{m+n}\Rightarrow2017\left(n+2017\right)=m\left(m+n\right)\Rightarrow m=2017\)
\(\Rightarrow x=\frac{2017}{2017+2017}=\frac{2017}{2017+2017}=\frac{2017}{2017+2017}=\frac{1}{2}\)
\(x=\frac{m}{n+2017}=\frac{n}{m+2017}=\frac{2017}{m+n}\) ( m , n là hai số thực khác -2017 và \(m+n\ne0\) )
Ta có: \(m+n\ne0.\)
\(\Rightarrow m+n+2017\ne2017.\)
Có:
\(x=\frac{m}{n+2017}=\frac{n}{m+2017}=\frac{2017}{m+n}\) và \(m+n+2017\ne2017.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(x=\frac{m}{n+2017}=\frac{n}{m+2017}=\frac{2017}{m+n}\)
\(\Rightarrow x=\frac{m+n+2017}{n+2017+m+2017+m+n}\)
\(\Rightarrow x=\frac{m+n+2017}{2m+2n+4034}\)
\(\Rightarrow x=\frac{m+n+2017}{2.\left(m+n+2017\right)}\)
\(\Rightarrow x=\frac{1}{2}.\)
Vậy \(x=\frac{1}{2}.\)
Chúc bạn học tốt!
Các bạn giúp ạ : @Vũ Minh Tuấn , @Băng Băng 2k6 , @Phạm Lan Hương , và cô @Akai Haruma
Cho M, N, P là các số khác 0và M+N+P\(\ne\)0 thỏa mãn \(\frac{1}{M}+\frac{1}{N}+\frac{1}{P}=\frac{1}{M+N+P}\). Chứng minh: \(\frac{1}{M^{2017}}+\frac{1}{N^{2017}}+\frac{1}{P^{2017}}=\frac{1}{M^{2017}+N^{2017}+P^{2017}}\)
\(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}-\frac{1}{m+n+p}=0\)
\(\Leftrightarrow\frac{m+n}{mn}+\frac{m+n}{p\left(m+n+p\right)}=0\)
\(\Leftrightarrow\left(m+n\right)\left(\frac{pm+pn+p^2+mn}{mnp\left(m+n+p\right)}\right)=0\)
\(\Leftrightarrow\left(m+n\right)\left(n+p\right)\left(p+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m=-n\\m=-p\\p=-n\end{matrix}\right.\)
Cả 3 TH là như nhau
Ví dụ như TH1: \(\frac{1}{m^{2017}}+\frac{1}{-m^{2017}}+\frac{1}{p^{2017}}=\frac{1}{p^{2017}}\)
\(\frac{1}{m^{2017}-m^{2017}+p^{2017}}=\frac{1}{p^{2017}}\) (đpcm)
\(\frac{m}{n}\)=\(\frac{2017}{2017}\)chứng minh rằng \(\frac{m}{n}\)=\(\frac{m+2017}{n+2017}\)
co m/n =2017/2017 => m/n=1 =>m=n => m+2017=n+2017
suy ra m+2017/n+2017 =1
ma m/n=1 => m/n=m+2017/n+2017
Ta có :
\(\frac{m}{n}=\frac{2017}{2017}\Leftrightarrow m=n\)
=> \(\frac{m+2017}{n+2017}=\frac{m+2017}{m+2017}=1=\frac{m}{n}\)
=> \(\frac{m}{n}=\frac{m+2017}{n+2017}\)(đpcm)
Cho ba số nguyên dương x,y,z thỏa mãn: x + y + z = 2017 và cho biểu thức:
A=\(\frac{x}{2017-z}\) + \(\frac{y}{2017-x}\) +\(\frac{z}{2017-y}\)
CMR: giá trị của A ko phải số nguyên
Theo bài ra ta có x + y + z = 2017
⇔\(\left\{{}\begin{matrix}2017-z=x+y\\2017-y=x+z\\2017-x=y+z\end{matrix}\right.\) (1)
Thay (1) vào \(A=\frac{x}{2017-z}+\frac{y}{2017-x}+\frac{z}{2017-y}\) ta được
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
Lại có \(\left\{{}\begin{matrix}x< x+y< x+y+z\\y< y+z< x+y+z\\z< x+z< x+y+z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{x+y+z}< \frac{x}{x+y}< 1\\\frac{y}{x+y+z}< \frac{y}{y+z}< 1\\\frac{z}{x+y+z}< \frac{z}{x+z}< 1\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\frac{x}{x+y+z}< \frac{x}{x+y}< \frac{x+z}{x+y+z}\\\frac{y}{x+y+z}< \frac{y}{y+x}< \frac{y+z}{x+y+z}\\\frac{z}{x+y+z}< \frac{z}{z+x}< \frac{z+y}{x+y+z}\end{matrix}\right.\)
( Áp dụng tính chất \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+c}\) )
⇔ \(\frac{x+y+z}{x+y+z}< \frac{x}{x+y}+\frac{y}{y+x}+\frac{z}{x+z}< \frac{2.\left(x+y+z\right)}{x+y+z}\)
⇔ 1 < A < 2
⇔ A ko phải là số nguyên
Học tốt ~~ lâu hơn lm hình r c ạ ))
So sánh
M = \(\frac{2016}{2017}+\frac{2017}{2018}\&N\frac{2016+2017}{2017+2018}?\)
N = \(\frac{2016+2017}{2017+2018}=\frac{2016}{2017+2018}+\frac{2017}{2017+2018}\)
Ta có: \(\frac{2016}{2017}>\frac{2016}{2017+2018}\)
\(\frac{2017}{2016}>\frac{2017}{2017+2018}\)
Nên M > N
Ta thấy : \(\frac{2016+2017}{2017+2018}\)=\(\frac{2016}{2017+2018}\)+\(\frac{2017}{2017+2018}\)
Vì : \(\frac{2016}{2017}\)>\(\frac{2016}{2017+2018}\)
\(\frac{2017}{2018}\)>\(\frac{2017}{2017+2018}\)
Cộng vế với vế ta được : \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)> \(\frac{2016}{2017+2018}\)+\(\frac{2017}{2017+2018}\)
Hay M > N
Vậy M > N
Chúc bạn hok tốt !!
Tìm x thỏa mãn:
\(\frac{x+1}{2018}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+4}{2015}+\frac{x+5}{2014}+\frac{x+6}{2013}\)
\(\frac{x+1}{2018}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+4}{2015}+\frac{x+5}{2014}+\frac{x+6}{2013}\)
\(\Leftrightarrow\) \(\frac{x+1}{2018}+1+\frac{x+2}{2017}+1+\frac{x+3}{2016}+1=\frac{x+4}{2015}+1+\frac{x+5}{2014}+1+\frac{x+6}{2013}+1\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}=\frac{x+2019}{2015}+\frac{x+2019}{2014}+\frac{x+2019}{2013}\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}-\frac{x+2019}{2015}-\frac{x+2019}{2014}-\frac{x+2019}{2013}=0\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)\)\(=0\)
Lại có: \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\) \(\ne\) \(0\)
\(\Rightarrow x+2019=0\)
\(\Rightarrow x=0-2019=-2019\)
Vậy x= -2019
Cho a,b,c thỏa mãn\(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\) .
Tính M=\(\frac{a^{2017}+b^{2018}+c^{2918}}{a^{2017}b^{2018}c^{2019}}\)