4x(2 – x) + (2x + 1)^2 = 2.
tìm x nha mn trình bày ra hết lun
b) 4x(2 – x) + (2x + 1)^2 = 2.
c) (x – 3)3 – x^2 (x – 9) = 0.
tìm x, trình bày ra hết lun
c: \(\Leftrightarrow x^3-9x^2+27x-27-x^3+9x^2=0\)
hay x=1
b) 4x(2 – x) + (2x + 1)^2 = 2.
c) (x – 3)^3 – x^2 (x – 9) = 0.
tìm x, trình bày ra hết lun
b) 4x(2-x)+(2x+1)^2=2
8x-4x^2+4x^2+4x+1-2=0
(8x+4x)+(-4x^2+4x^2)+(1-2)=0
12x + 0 -1 =0
12x=1
x=1/12
Vậy x= 1/2
c) (x-3)^3-x^2(x-9)=0
x^3-9x^2+27x-x^3+9x^2=0
(x^3-x^3)+(-9x^2+9x^2)+27x=0
0 + 0 + 27x=0
x= 0
Vậy x=0
4x(2 – x) + (2x + 1)^2 = 2.
tìm x nha trình bày ra lun
\(\Leftrightarrow8x-4x^2+4x^2+4x+1=2\)
\(\Leftrightarrow x=\dfrac{1}{12}\)
\(4x\left(2-x\right)+\left(2x+1\right)^2=2\)
\(\Leftrightarrow8x-4x^2+4x^2+4x+1=2\)
\(\Leftrightarrow12x=1\)
\(\Leftrightarrow x=\dfrac{1}{12}\)
x(x + 3) – x^2 = 6.
trình bày ra hết lun
\(\Rightarrow x^2+3x-x^2=6\\ \Rightarrow3x=6\Rightarrow x=2\)
a) (1,0 điểm) (3 + x) (4 – x) + x^2 – 2x.
b) (1,0 điểm) (x – 1)^2 – (x + 2) (x – 2).
trình bày ra hết lun
\(a,=12-3x+4x-x^2+x^2-2x=12-x\\ b,=x^2-2x+1-x^2+4=-2x+5\)
a) (x + 2)^2 . b) (x + 1)^3 . c) x^2 – 3^2 .
Khai triển hằng đẳng thức: trình bày ra hết lun
\(a,=x^2+4x+4\\ b,=x^3+3x^2+3x+1\\ c,=\left(x-3\right)\left(x+3\right)\)
a,\(\left(x+2\right)^2=x^2+2.x.2+2^2=x^2+4x+4\)
b, \(\left(x+1\right)^3=x^3+3.x^2.1+3.x.1^2+1^3=x^3+3x^2+3x+1\)
c,\(x^2-3^2=\left(x-3\right).\left(x+3\right)\)
a,(x+2)2=x2+2.x.2+22=x2+4x+4(x+2)2=x2+2.x.2+22=x2+4x+4
b, (x+1)3=x3+3.x2.1+3.x.12+13=x3+3x2+3x+1(x+1)3=x3+3.x2.1+3.x.12+13=x3+3x2+3x+1
c,x2−32=(x−3).(x+3)
x(x + 3) – x 2 = 6.
tìm x trình bày ra hết nhun
từ từ sửa lại
x(x + 3) – x^2 = 6.
a.6(x-2)=8(3x+1)
b.2x-(3-7x)=5(x+3)
c.(x-1)^2=(x+3)(x+2)
d.(3x-9)(4x+5)=0
e.x^2-3x+2=0
f.x^2-4x+4=0
giải phương trình
trình bày hết luôn
\(a,6\left(x-2\right)=8\left(3x+1\right)\\ \Leftrightarrow6x-12=24x+8\\ \Leftrightarrow18x+20=0\\ \Leftrightarrow x=-\dfrac{10}{9}\\ b,2x-\left(3-7x\right)=5\left(x+3\right)\\ \Leftrightarrow2x-3+7x=5x+15\\ \Leftrightarrow9x-3-5x-15=0\\ \Leftrightarrow4x-18=0\\ \Leftrightarrow x=\dfrac{9}{2}\\ c,\left(x-1\right)^2=\left(x+3\right)\left(x+2\right)\\ \Leftrightarrow x^2-2x+1=x^2+5x+6\\ \Leftrightarrow7x+5=0\\ \Leftrightarrow x=-\dfrac{5}{7}\\ d,\left(3x-9\right)\left(4x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-9=0\\4x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{4}\end{matrix}\right.\)
\(e,x^2-3x+2=0\\ \Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\\ \Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\\ \left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\\ f,x^2-4x+4=0\\ \Leftrightarrow x^2-2.2+2^2=0\\ \Leftrightarrow\left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ x=2\)
a, \(6x-12=24x+8\Leftrightarrow18x=-20\Leftrightarrow x=-\dfrac{20}{18}=-\dfrac{10}{9}\)
b, \(2x-3+7x=5x+15\Leftrightarrow4x=18\Leftrightarrow x=\dfrac{9}{2}\)
c, \(x^2-2x+1=x^2+5x+6\Leftrightarrow7x=-5\Leftrightarrow x=-\dfrac{5}{7}\)
d, \(\left[{}\begin{matrix}3x-9=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{4}\end{matrix}\right.\)
e, \(x^2-3x+2=0\Leftrightarrow x^2-2x-x+2=0\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow x=1;x=2\)
f, \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
a) (1,0 điểm) (x – 1)(2x + 3) – 2x 2 + 3x.
b) (1,0 điểm) (x + 3)2 – (x + 2) (x – 2).
rút gọn biểu thức, trình bày ra lun
b: \(=x^2+6x+9-x^2+4=6x+13\)