\(a,=x^2+4x+4\\ b,=x^3+3x^2+3x+1\\ c,=\left(x-3\right)\left(x+3\right)\)
a,\(\left(x+2\right)^2=x^2+2.x.2+2^2=x^2+4x+4\)
b, \(\left(x+1\right)^3=x^3+3.x^2.1+3.x.1^2+1^3=x^3+3x^2+3x+1\)
c,\(x^2-3^2=\left(x-3\right).\left(x+3\right)\)
a,(x+2)2=x2+2.x.2+22=x2+4x+4(x+2)2=x2+2.x.2+22=x2+4x+4
b, (x+1)3=x3+3.x2.1+3.x.12+13=x3+3x2+3x+1(x+1)3=x3+3.x2.1+3.x.12+13=x3+3x2+3x+1
c,x2−32=(x−3).(x+3)