Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lu nguyễn
Xem chi tiết
Trương Anh
4 tháng 3 2018 lúc 17:41

Bài 1: (Mình vẫn ko hiểu lắm là phải làm ntn nên sẽ làm 2 cách)

a) \(-30x^2+30x-7,5=0\)

C1: Ta có: \(a=-30\) ; \(b=30\) ; \(c=-7,5\)

\(\Rightarrow\) \(\Delta=b^2-4ac=30^2-4.\left(-30\right).\left(-7,5\right)\)

\(\Delta=1012>0\) (lấy gần bằng nhưng vì \(\Delta\) ko có giá trị gần bằng nên chỉ ghi là "=" thôi)

\(\Rightarrow\)\(\sqrt{\Delta}=\sqrt{1012}=2\sqrt{253}\)

Vậy p/t đã cho có 2 nghiệm phân biệt là:

\(x_1=\frac{b^2-\sqrt{\Delta}}{2a}=\frac{\left(-30\right)^2-2\sqrt{253}}{2.\left(-30\right)}\approx-14,47\)

\(x_2=\dfrac{b^2+\sqrt{\Delta}}{2a}=\dfrac{\left(-30\right)^2+2\sqrt{253}}{2.\left(-30\right)}\approx-15.53\)

C2: Ta có: \(a=30\) ; \(b'=-15\) ; \(c=7,5\)

\(\Rightarrow\) \(\Delta'=b'^2-ac=\left(-15\right)-30.7,5\)

\(\Delta=0\)

Vậy p/t đã cho có nghiệm kép:

\(x_1=x_2=-\dfrac{b'}{a}=-\dfrac{\left(-15\right)}{30}=\dfrac{1}{2}=0,5\)

b) (Tương tự)

Bài 2:

\(x^2-2\left(m+2\right)x+m^2-12=0\)

a) Tại \(m=-4\) thì:

\(x^2-2\left(-4+2\right)x+\left(-4\right)^2-12=0\)

\(\Leftrightarrow\) \(x^2-2.\left(-2\right)x+\left(-4\right)^2-12=0\)

\(\Leftrightarrow\) \(x^2+4x+16-12=0\)

\(\Leftrightarrow\) \(x^2+4x+4=0\)

\(\Leftrightarrow\) \(\left(x+2\right)^2=0\)

\(\Leftrightarrow\) \(x+2=0\)

\(\Leftrightarrow\) \(x=-2\)

oooloo
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 10 2019 lúc 12:31

1/

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\x+y+z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=-3\end{matrix}\right.\)

2/ \(P=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(3-5x\right)^2}\)

\(P=\left|5x-2\right|+\left|3-5x\right|\ge\left|5x-2+3-5x\right|=1\)

\(\Rightarrow P_{min}=1\) khi \(\frac{2}{5}\le x\le\frac{3}{5}\)

3/ ĐKXĐ: \(\left|x\right|\ge1\)

\(x^2-1-\sqrt{x^2-1}=0\)

\(\Leftrightarrow\sqrt{x^2-1}\left(\sqrt{x^2-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=0\\\sqrt{x^2-1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2-1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\right.\)

Khách vãng lai đã xóa
Đặng Tiến Thắng
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 11 2021 lúc 22:49

Chú ý:

\(\left(x^2+2x\right)^2+4\left(x+1\right)^2=\left(x^2+2x\right)^2+4\left(x^2+2x+1\right)=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4\)

\(=\left(x^2+2x+2\right)^2\)

\(x^2+\left(x+1\right)^2+\left(x^2+x\right)^2\)

\(=\left(x^2+x\right)+x^2+x^2+2x+1\)

\(=\left(x^2+x\right)^2+2x^2+2x+1\)

\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)

\(=\left(x^2+x+1\right)^2\)

nthv_.
3 tháng 11 2021 lúc 22:50

èo =))

Phạm Hồ Thanh Quang
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
22 tháng 7 2021 lúc 16:07

mong mọi người giải giúp em vs gianroigianroi

Lê Thu Hiền
Xem chi tiết