Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dũng
Xem chi tiết
29 Phúc Hưng
Xem chi tiết
Marry Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 18:44

a: góc ACM=1/2*sđ cung AM=90 độ

b: góc ADB=góc AEB=90 độ

=>ABDE nội tiếp

Nhung Hoàng
Xem chi tiết
IS
21 tháng 4 2020 lúc 9:13

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

Khách vãng lai đã xóa
trần minh khôi
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 23:54

a: góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

b,c: M ở đâu vậy bạn?

Anh Quân Võ
Xem chi tiết
Ngọc Anh Nguyễn
Xem chi tiết
Cao Bảo
Xem chi tiết
Akai Haruma
25 tháng 3 2021 lúc 21:41

Lời giải:

a) Tứ giác $AFHE$ có tổng 2 góc đối nhau  $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.

b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)

Xét tam giác $ABD$ và $AKC$ có:

$\widehat{ADB}=\widehat{ACK}=90^0$

$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)

$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)

$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$

$\Rightarrow AB.AC=AD.AK$ (đpcm)

Akai Haruma
25 tháng 3 2021 lúc 21:46

Hình vẽ:

undefined

ekhoavvdd
Xem chi tiết
ekhoavvdd
14 tháng 3 2021 lúc 14:46

ai đó làm giúp với

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 5 2019 lúc 10:53

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pitago vào tam giác vuông ABC ta có :

B C 2 = A B 2 + A C 2 = 3 2 + 4 2  = 25

Suy ra : BC = 5 (cm)

Theo tính chất hai tiếp tuyến giao nhau ta có:

AD = AE

BD = BF

CE = CF

Mà: AD = AB – BD

AE = AC – CF

Suy ra: AD + AE = AB – BD + (AC – CF)

= AB + AC – (BD + CF)

= AB + AC – (BF + CF)

= AB + AC – BC

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9