Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Anh
Xem chi tiết
Ami Mizuno
9 tháng 2 2022 lúc 8:19

a. \(lim_{x\rightarrow3}\dfrac{x^3-27}{3x^2-5x-2}=\dfrac{3^3-27}{3.3^2-5.3-2}=\dfrac{0}{10}=0\)

b. \(lim_{x\rightarrow2}\dfrac{\sqrt{x+2}-2}{4x^2-3x-2}=\dfrac{\sqrt{2+2}-2}{4.2^2-3.2-2}=\dfrac{0}{8}=0\)

c. \(lim_{x\rightarrow1}\dfrac{1-x^2}{x^2-5x+4}=lim_{x\rightarrow1}\dfrac{\left(1-x\right)\left(x+1\right)}{\left(x-1\right)\left(x-4\right)}=lim_{x\rightarrow1}\dfrac{-\left(x+1\right)}{x-4}=\dfrac{-\left(1+1\right)}{1-4}=\dfrac{2}{3}\)

d. Câu này mình chịu, nhìn đề hơi lạ so với bình thường hehe

Phương Vy
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 11 2023 lúc 20:31

a: \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{2x^2+7x+6}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(2+x\right)}{2x^2+4x+3x+6}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(2x+3\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{2-x}{2x+3}=\dfrac{2-\left(-2\right)}{2\cdot\left(-2\right)+3}=\dfrac{4}{-4+3}=-4\)

b: \(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3+64}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x^2-8x-5x+20}{\left(x+4\right)\left(x^2-4x+16\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(2x-5\right)}{x^3+64}\)

\(=\dfrac{\left(4-4\right)\left(2\cdot4-5\right)}{4^3+64}=0\)

c: \(\lim\limits_{x\rightarrow-1}\dfrac{2x^2+8x+6}{-2x^2+7x+9}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{2x^2+2x+6x+6}{-2x^2-2x+9x+9}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{-2x\left(x+1\right)+9\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{\left(x+1\right)\left(-2x+9\right)}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{2x+6}{-2x+9}=\dfrac{2\cdot\left(-1\right)+6}{-2\cdot\left(-1\right)+9}\)

\(=\dfrac{4}{11}\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 11 2023 lúc 21:59

\(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3-64}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x^2-8x-5x+20}{\left(x-4\right)\left(x^2+4x+16\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(2x-5\right)}{\left(x-4\right)\left(x^2+4x+16\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x-5}{x^2+4x+16}=\dfrac{2\cdot4-5}{4^2+4\cdot4+16}=\dfrac{3}{48}=\dfrac{1}{16}\)

Akai Haruma
18 tháng 11 2023 lúc 22:05

Lời giải:
\(\lim\limits_{x\to 4}\frac{2x^2-13x+20}{x^3-64}=\lim\limits_{x\to 4}\frac{(2x-4)(x-4)}{(x-4)(x^2+4x+16)}=\lim\limits_{x\to 4}\frac{2x-4}{x^2+4x+16}=\frac{1}{12}\)

dang thi khanh ly
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 13:09

\(1=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{2x}=\lim\limits_{x\rightarrow0}\frac{x}{2x}.\frac{1}{\sqrt{x+4}+2}=\lim\limits_{x\rightarrow0}\frac{1}{2\left(\sqrt{x+4}+2\right)}=\frac{1}{2\left(\sqrt{4}+2\right)}\)

\(2=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}.\frac{1}{\sqrt{x+3}+2}=\lim\limits_{x\rightarrow1}\frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{1+3}+2}\)

\(3=\lim\limits_{x\rightarrow3}\frac{\sqrt{2x+3}-x}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3-x^2}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}\)

\(=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(3-x\right)}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}=\lim\limits_{x\rightarrow3}\frac{x+1}{\left(1-x\right)\left(\sqrt{2x+3}+x\right)}=\frac{3+1}{\left(1-3\right)\left(\sqrt{9}+3\right)}\)

\(4=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{\left(x+1\right)^2\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{2x-1}{\left(x+1\right)^2}=\frac{4-1}{\left(2+1\right)^2}\)

P/s: lần sau bạn sử dụng tính năng gõ công thức ở kí hiệu \(\sum\) góc trên cùng bên trái khung soạn thảo ấy, khó nhìn đề quá chẳng muốn làm

Khách vãng lai đã xóa
Nguyen Tam
Xem chi tiết
Akai Haruma
5 tháng 3 2021 lúc 23:21

*** Mình nhớ là đã nhắc nhở bạn về việc sử dụng hộp công thức toán để viết đề dễ hiểu hơn. Lần nữa thì mình xin phép xóa bài nhé. Bạn sử dụng bộ gõ công thức toán ở biểu tượng $\sum$

Lời giải:

\(\lim\limits_{x\to +\infty}(\sqrt[3]{x^3+5x}-\sqrt{x^2-3x+6})=\lim\limits_{x\to +\infty}[(\sqrt[3]{x^3+5x}-x)-(\sqrt{x^2-3x+6}-x)]\)

\(=\lim\limits_{x\to +\infty}\left[\frac{5x}{\sqrt[3]{(x^3+5x)^2}+x\sqrt[3]{x^3+5x}+x^2}-\frac{-3x+6}{\sqrt{x^2-3x+6}+x}\right]\)

\(=\lim\limits_{x\to +\infty}[\frac{5}{\sqrt[3]{x^3+10x+\frac{25}{x}}+\sqrt[3]{x^2+5x}+x}-\frac{-3+\frac{6}{x}}{\sqrt{1-\frac{3}{x}+\frac{6}{x^2}}+1}]\)

\(=(0-\frac{-3}{2})=\frac{3}{2}\)

Nguyen Tam
Xem chi tiết
Pham Tien Dat
5 tháng 3 2021 lúc 20:21

\(=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{3+2x}-3-\sqrt{7-x}+2}{2x-6}\)

\(=\lim\limits_{x\rightarrow3}\left(\dfrac{2x-6}{\left(2x-6\right)\left(\sqrt{3+2x}+3\right)}-\dfrac{3-x}{\left(2x-6\right)\left(\sqrt{7-x}+2\right)}\right)\)

\(=\dfrac{1}{\sqrt{3+2\cdot3}+3}+\dfrac{1}{2\cdot\left(\sqrt{7-3}+2\right)}=\dfrac{7}{24}\)

Trần Huy tâm
5 tháng 3 2021 lúc 20:41

dễ thấy hàm số có dạng 0/0

áp dụng l'hospital

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{3+2x}-\sqrt{7-x}-1}{2x-6}\\ =\lim\limits_{x\rightarrow3}\dfrac{\left(\sqrt{3+2x}-\sqrt{7-x}-1\right)'}{\left(2x-6\right)'}=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{2}{2\sqrt{3+2x}}+\dfrac{1}{2\sqrt{7-x}}}{2}=\dfrac{7}{24}\)

 

dang thi khanh ly
Xem chi tiết
Thành Trương
Xem chi tiết
Phùng Khánh Linh
9 tháng 6 2018 lúc 13:39

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

Thành Trương
8 tháng 6 2018 lúc 12:24

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma