\(=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{3+2x}-3-\sqrt{7-x}+2}{2x-6}\)
\(=\lim\limits_{x\rightarrow3}\left(\dfrac{2x-6}{\left(2x-6\right)\left(\sqrt{3+2x}+3\right)}-\dfrac{3-x}{\left(2x-6\right)\left(\sqrt{7-x}+2\right)}\right)\)
\(=\dfrac{1}{\sqrt{3+2\cdot3}+3}+\dfrac{1}{2\cdot\left(\sqrt{7-3}+2\right)}=\dfrac{7}{24}\)
dễ thấy hàm số có dạng 0/0
áp dụng l'hospital
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{3+2x}-\sqrt{7-x}-1}{2x-6}\\ =\lim\limits_{x\rightarrow3}\dfrac{\left(\sqrt{3+2x}-\sqrt{7-x}-1\right)'}{\left(2x-6\right)'}=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{2}{2\sqrt{3+2x}}+\dfrac{1}{2\sqrt{7-x}}}{2}=\dfrac{7}{24}\)