Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lee Yeong Ji
Xem chi tiết
Lee Yeong Ji
Xem chi tiết
lê thị xuân nở
7 tháng 5 2022 lúc 10:29

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25

x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0

(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0

(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4

Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)

ta có bảng:

x+1                   1                5                -1                  -5

y+1                 -5                -1                5                     1

x                       0                 4                 -2                    -6

y                     -6                  -2                 4                  0

→(x,y)ϵ{(0;−6),(4;−2)...}

 
diggory ( kẻ lạc lõng )
7 tháng 5 2022 lúc 11:28

\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)

\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)

\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)

\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)

nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\) 

                                                                ( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )

ta lập bảng :

       \(x+1\)           \(1\)         \(5\)         \(-1\)         \(-5\)
       \(y+1\)         \(-5\)          \(-1\)          \(5\)          \(1\) 
          \(x\)            \(0\)            \(4\)         \(-2\)          \(-6\) 
           \(y\)         \(-6\)          \(-2\)           \(4\)           \(0\)

\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)

Phạm Trung Đức
Xem chi tiết
Yurika
Xem chi tiết
Cúc Nguyễn
Xem chi tiết
APTX 4869
Xem chi tiết
Bui Huyen
21 tháng 8 2019 lúc 21:38

\(\Leftrightarrow x^2+y^2+1+2x+2y+2xy=3\left(x^2+y^2+1\right)\)

\(\Leftrightarrow2x^2+2y^2+2-2x-2y-2xy=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2+y^2-2xy\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow x=y=1\)

Nguyễn Ngọc Uyên Như
Xem chi tiết
tiểu an Phạm
Xem chi tiết
thanh
8 tháng 5 2018 lúc 21:17

chuyển vế ta có:

\(x^2-2xy+2y^2-2x-1=x^2-2x\left(y+1\right)+2y^2-1\)

tinh penta ta có:

\(penta'=\left(y+1\right)^2-\left(2y^2-1\right)=-y^2+2y+2=-\left(y+1\right)^2+3\)

để pt có nghiệm nguyên thi penta' phai lon hon hoac bang 0

co penta' nho hon hoac bang 3

từ 2 điều trên ta có: 0 nho hon hoac bang penta' <3

theo penta' ta có \(x_1=y+1-\sqrt{-\left(y+1\right)^2+3}\)

\(x_2=y+1+\sqrt{-\left(y+1\right)^2+3}\)\

mà x nguyên, y nguyên nên ta có: 

\(\sqrt{-\left(y+1\right)^2+3}thuocZ\) =>\(-\left(y+1\right)^2+3\) la SCP

ma 0 nho hon hoac bang \(-\left(y+1\right)^2+3\) <3

=>\(-\left(y+1\right)^2+3\) =0 hoặc =1

, nếu trường hợp nào cho cả 2 nghiệm x,y nguyên thì chọn

Pham Quoc Cuong
8 tháng 5 2018 lúc 20:48

PT\(\Leftrightarrow x^2-2xy+2y^2=2x+2\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2-2x=2\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(y-x\right)+1+y^2-2y+1=4\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-1\right)^2=4\)

Do x,y nguyên => Các hạng tử là số CP

Ta có các trường hợp 

(y-1)204
(x-y-1)240

+) (y-1)2=0 

=> y= 1 

=> x= 0 hoặc 4

+) (y-1)2=4

=> y= -1 hoặc 3

=> (x;y)= (2;-1);(4;3)

tiểu an Phạm
8 tháng 5 2018 lúc 20:54

cách của bạn đúng nhưng bạn sai dấu ở dấu <=> thứ 3

Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
29 tháng 8 2023 lúc 13:49

Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)

\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

\(VP=\left(y^2+3y+1\right)^2-1\)

\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))

pt đã cho trở thành:

\(x^2=t^2-1\)

\(\Leftrightarrow t^2-x^2=1\)

\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)

Ta xét các TH:

\(t-x\) 1 -1
\(t+x\) 1 -1
\(t\) 1 -1
\(x\) 0

0

Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)

Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).

 Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)

 

nguyễn quỳnh lưu
Xem chi tiết
Võ Thị Quỳnh Giang
8 tháng 10 2017 lúc 15:10

ta có : \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)

<=>\(x^3+x^2+x+1=4y^2+4y+1\)

<=>\(\left(x^2+1\right)\left(x+1\right)=\left(2y+1\right)^2\)

ta thấy : \(x^2+1\) và \(x+1\) cùng  tính  chẵn lẻ.Mà \(\left(2y+1\right)^2\) là bình phương của 1 số lẻ nên \(x^2+1\) và \(x+1\) cùng lẻ => x chẵn

mặt khác: tích \(\left(x^2+1\right)\left(x+1\right)\) là 1 số chính phương lẻ =>\(x^2+1=x+1\)

                     <=>\(x^2=x\) <=> x(x-1)=0 \(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

mà x là số chẵn nên x=0 => 4y(y+1)=0 \(\Rightarrow\orbr{\begin{cases}y=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}}\)

vậy nghiệm của phương trình là : (x;y)={ (0;0) ; (0;-1)}

Trần Hà Lan
29 tháng 1 2019 lúc 17:04

Tại sao lại suy ra x2+1=x+1. Mình không hiểu chỗ đó giải thích cho mình với

Nguyễn Linh Chi
6 tháng 11 2019 lúc 14:56

Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa