Cho các số a,b,c thỏa mãn: a+b+c=1/a+1/b+1/c=1.Tính giá trị biểu thức sauM=a2015+b2015+c2015
Cho các số thực a;b;c khác 0 thỏa mãn a^3+b^3+c^3=3abc. Tính giá trị biểu thức A=(1+a/b)(1+b/c)(1+c/a)
a^3+b^3+c^3=3abc
=>(a+b)^3+c^3-3ab(a+b)-3bac=0
=>(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)=0
=>(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=0
=>a^2+b^2+c^2-ab-bc-ac=0
=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0
=>(a-c)^2+(a-b)^2+(b-c)^2=0
=>a=b=c
=>A=(1+b/b)(1+b/b)(1+c/c)
=2*2*2=8
Cho các số a b c , , thỏa mãn abc 0 và 1 1 1 1 3 a b b c c a a b c c a b . Tính giá trị của biểu thức S a b c 2011.
1. Cho a, b, c, d thỏa mãn: abcd=1.
Tính gía trị biểu thức:
M= \(\dfrac{a}{abc+ab+a+1}+\dfrac{b}{bcd+bc+b+1}+\dfrac{c}{cda+cd+1}+\dfrac{d}{dab+da+d+1}\)
2. Cho các số a, b, c, d thỏa mãn: 0 ≤a, b, c, d ≤1.
Tìm giá trị lớn nhất của biểu thức:
N\(=\dfrac{a}{bcd+1}+\dfrac{b}{cda+1}+\dfrac{c}{dab+1}+\dfrac{d}{abc+1}\)
3. Cho tam giác ABC nhọn có các đường cao AM, BN, CP cắt nhau tại H.
a) Chứng minh: \(AB.BP+AC.CN=BC^2\)
b) Cho B, C cố định A thay đổi. Tìm vị trí điểm A để: MH,MA đạt max ?
c) Gọi S,S1,S2,S3 lần luợt là diện tích các tam giác ABC, APN, BMP, CMN.
Chứng minh: \(S_1.S_2.S_3\) ≤ \(\dfrac{1}{64}S_3\)
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$
3.
Hình vẽ:
Lời giải:
a) △AMC và △BNC có: \(\widehat{AMC}=\widehat{BNC}=90^0;\widehat{ACB}\) là góc chung.
\(\Rightarrow\)△AMC∼△BNC (g-g).
\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CM}{CN}\Rightarrow AC.CN=BC.CM\left(1\right)\)
b) △AMB và △CPB có: \(\widehat{AMB}=\widehat{CPB}=90^0;\widehat{ABC}\) là góc chung.
\(\Rightarrow\)△AMB∼△CPB (g-g)
\(\Rightarrow\dfrac{AB}{CB}=\dfrac{BM}{BP}\Rightarrow AB.BP=BC.BM\left(2\right)\)
Từ (1) và (2) suy ra:
\(AC.CN+AB.BP=BC.CM+BC.BM=BC.\left(CM+BM\right)=BC.BC=BC^2\left(đpcm\right)\)b) Gọi \(M_0\) là trung điểm BC, giả sử \(AB< AC\).
\(\widehat{HBM}=90^0-\widehat{BHM}=90^0-\widehat{AHN}=\widehat{CAM}\)
△HBM và △CAM có: \(\widehat{HBM}=\widehat{CAM};\widehat{HMB}=\widehat{CMA}=90^0\)
\(\Rightarrow\)△HBM∼△CAM (g-g)
\(\Rightarrow\dfrac{MH}{CM}=\dfrac{BM}{MA}\Rightarrow MH.MA=BM.CM\)
Ta có: \(BM.CM=\left(BM_0-MM_0\right)\left(CM_0+MM_0\right)=\left(BM_0-MM_0\right)\left(BM_0+MM_0\right)=BM_0^2-MM_0^2\le BM_0^2=\dfrac{BC^2}{4}\)
\(\Rightarrow MH.MA\le\dfrac{BC^2}{4}\).
Vì \(BC\) không đổi nên: \(max\left(MH.MA\right)=\dfrac{BC^2}{4}\), đạt được khi △ABC cân tại A hay A nằm trên đường trung trực của BC.
c) Sửa đề: \(S_1.S_2.S_3\le\dfrac{1}{64}.S^3\)
△AMC∼△BNC \(\Rightarrow\dfrac{AC}{BC}=\dfrac{MC}{NC}\Rightarrow\dfrac{AC}{MC}=\dfrac{BC}{NC}\)
△ABC và △MNC có: \(\dfrac{AC}{MC}=\dfrac{BC}{NC};\widehat{ACB}\) là góc chung.
\(\Rightarrow\)△ABC∼△MNC (c-g-c)
\(\Rightarrow\dfrac{S_{MNC}}{S_{ABC}}=\dfrac{S_1}{S}=\dfrac{MC}{AC}.\dfrac{NC}{BC}\left(1\right)\)
Tương tự:
△ABC∼△MBP \(\Rightarrow\dfrac{S_{MBP}}{S_{ABC}}=\dfrac{S_2}{S}=\dfrac{MB}{AB}.\dfrac{BP}{BC}\left(2\right)\)
△ABC∼△ANP \(\Rightarrow\dfrac{S_{ANP}}{S_{ABC}}=\dfrac{S_3}{S}=\dfrac{AN}{AB}.\dfrac{AP}{AC}\left(3\right)\)
Từ (1), (2), (3) suy ra:
\(\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}=\left(\dfrac{MC}{AC}.\dfrac{NC}{BC}\right).\left(\dfrac{MB}{AB}.\dfrac{BP}{BC}\right).\left(\dfrac{AN}{AB}.\dfrac{AP}{AC}\right)\)
\(\Rightarrow\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}=\left(\dfrac{MC.MB}{AC.AB}\right).\left(\dfrac{BP.AP}{AC.BC}\right).\left(\dfrac{AN.CN}{AB.BC}\right)\) (*)
Áp dụng câu b) ta có:
\(\left\{{}\begin{matrix}BM.CM\le\dfrac{1}{4}BC^2\\AP.BP\le\dfrac{1}{4}AB^2\\AN.CN\le\dfrac{1}{4}AC^2\end{matrix}\right.\)
Từ (*) suy ra:
\(\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}\le\left(\dfrac{\dfrac{1}{4}BC^2}{AC.AB}\right).\left(\dfrac{\dfrac{1}{4}AC^2}{AC.BC}\right).\left(\dfrac{\dfrac{1}{4}AB^2}{AB.BC}\right)=\dfrac{1}{64}\)
\(\Rightarrow S_1.S_2.S_3\le\dfrac{1}{64}.S^3\)
Dấu "=" xảy ra khi △ABC đều.
Cho các số thực a, b, c thỏa mãn a + b + c = 3 và 1/a + 1/b + 1/c = 1/3 . Tính giá trị biểu thức P = (a − 3)^2017 .(b − 3)^2017 .(c − 3)^2017
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{3} \Leftrightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}(vì a+b+c=3)\)
\(\Leftrightarrow \dfrac{1}{a}+ \dfrac{1}{b}= \dfrac{1}{a+b+c}- \dfrac{1}{c }\)
\(\Leftrightarrow \dfrac{b+a}{ab}=\dfrac{c-a-b-c}{ac+bc+c^{2}}\)
\(\Leftrightarrow \dfrac{a+b}{ab}=\dfrac{a+b}{-ac-bc-c^2}\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab=-ac-bc-c^2 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab+ac+bc+c^2=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ (a+c)(b+c)=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ a+c=0\\ b+c=0 \end{array} \right.\)
Vì vai trò của a,b,c là như nhau nên ta giả sử a+b=0
mà a+b+c=0
\(\Rightarrow c=3\)
Thay c=3 vào biểu thức P ta có:
\(P=(a-3)^{2017}.(b-3)^{2017}.(3-3)^{2017} =0 \)
Vậy P=0
Cho các số a, b, c thỏa mãn : a¹⁰ + b¹⁰ + c¹⁰ = a⁵b⁵ + b⁵c⁵ + c⁵a⁵.
Tính giá trị của biểu thức : A= ( a - b - 1 )²⁰²⁰ + ( b - c )²⁰²¹ + 2020.
Cho các số a, b, c thỏa mãn a¹⁰ + b¹⁰ + c¹⁰ = a⁵b⁵ + b⁵c⁵ + c⁵a⁵.
Tính giá trị của biểu thức A = ( a - b - 1 )²⁰²⁰ + ( b - c )²⁰²¹ + 2020.
Cho các số a, b, c thỏa mãn a¹⁰ + b¹⁰ + c¹⁰ = a⁵b⁵ + b⁵c⁵ + c⁵a⁵.
Tính giá trị của biểu thức A = ( a - b - 1 )²⁰²⁰ + ( b - c )²⁰²¹ + 2020.
Cho các số a, b, c thỏa mãn a¹⁰ + b¹⁰ + c¹⁰ = a⁵b⁵ + b⁵c⁵ + c⁵a⁵.
Tính giá trị của biểu thức A = ( a - b - 1 )²⁰²⁰ + ( b - c )²⁰²¹ + 2020.
Cho a,b,c là các số thỏa mãn điều kiện a+b+c=1 và a3+b3+c3=1.
Tính giá trị biểu thức T=a2023+b2023+c2023
\(a+b+c=1\)
\(\Leftrightarrow\left(a+b+c\right)^3=1\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)
\(\Leftrightarrow1+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)'
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\)
Không mất tính tổng quát, giả sử \(a+b=0\), các trường hợp còn lại làm tương tự.
Khi đó từ \(a+b+c=1\) suy ra \(c=1\) (thỏa mãn). Thế thì \(T=0^{2023}+0^{2023}+1^{2023}=1\).
Như vậy \(T=1\)