a) 4x(x+1)=8(x+1)
<=>4x(x+1)-8(x+1)=0
<=>(4x-8)(x+1)=0
<=>\(\left[\begin{array}{}
4x-8=0\\
x+1=0
\end{array} \right.\)
<=>\(\left[\begin{array}{}
x=2\\
x=-1
\end{array} \right.\)
Vậy...
b)x(x-1)-2(1-x)=0
<=>(x+2)(x-1)=0
<=>\(\left[\begin{array}{}
x+2=0\\
x-1=0
\end{array} \right.\)
<=>\(\left[\begin{array}{}
x=-2\\
x=1
\end{array} \right.\)
Vậy...
c)5x(x-2)-(2-x)=0
<=>(5x+1)(x-2)=0
<=>\(\left[\begin{array}{}
5x+1=0\\
x-2
\end{array} \right.\)
<=>\(\left[\begin{array}{}
x=-1/5\\
x=2
\end{array} \right.\)
d)5x(x-200)-x+200=0
<=>(5x-1)(x-200)=0
<=>\(\left[\begin{array}{}
5x-1=0\\
x-200=0
\end{array} \right.\)
<=>\(\left[\begin{array}{}
x=1/5\\
x=200
\end{array} \right.\)
e)\(x^3+4x=0
\)
\(\Leftrightarrow x(x^2+4)=0
\)
\(\Leftrightarrow \left[\begin{array}{}
x=0\\
x^2+4=0 (loại vì x^2+4>=0 với mọi x)
\end{array} \right.\)
Vậy x=0
f)\((x+1)=(x+1)^2\)
\(\Leftrightarrow (x+1)-(x+1)^2=0\)
\(\Leftrightarrow (x+1)(1-x-1)=0\)
\(\Leftrightarrow (x+1)(-x)=0\)
\(\Leftrightarrow \left[\begin{array}{}
x=-1\\
x=0
\end{array} \right.\)
Vậy....