giải pt
\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
pro giải giúp vs
Giải pt:
\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\-4+\sqrt{7}\le x\le-1\end{matrix}\right.\)
Khi x thỏa ĐKXĐ, vế phải luôn dương, bình phương 2 vế ta được:
\(\Leftrightarrow3x^2+16x+17+2\sqrt{\left(x^2-1\right)\left(2x^2+16x+18\right)}=4x^2+16x+16\)
\(\Leftrightarrow2\sqrt{\left(x^2-1\right)\left(2x^2+16x+18\right)}=x^2-1\)
\(\Leftrightarrow4\left(x^2-1\right)\left(2x^2+16x+18\right)=\left(x^2-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\4\left(2x^2+16x+18\right)=x^2-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\7x^2+64x+73=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\x=\dfrac{-32+3\sqrt{57}}{7}\\x=\dfrac{-32-3\sqrt{57}}{7}\left(loại\right)\end{matrix}\right.\)
Giải PT : \(\sqrt{2x^2+16x+18}+\sqrt{x^2+1}=2x+4\)
\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
\(\Leftrightarrow\sqrt{2x^2+16x+18}-\left(2x+4\right)+\sqrt{x^2-1}=0\)
\(\Leftrightarrow\dfrac{2x^2+16x+18-\left(4x^2+16x+16\right)}{\sqrt{2x^2+16x+18}+\left(2x+4\right)}+\sqrt{x^2-1}=0\)
\(\Leftrightarrow\dfrac{2x^2+16x+18-4x^2-16x-16}{\sqrt{2x^2+16x+18}+\left(2x+4\right)}+\sqrt{x^2-1}=0\)
\(\Leftrightarrow\dfrac{-2x^2+2}{\sqrt{2x^2+16x+18}+\left(2x+4\right)}+\sqrt{x^2-1}=0\)
\(\Leftrightarrow\dfrac{-2\left(x^2-1\right)}{\sqrt{2x^2+16x+18}+\left(2x+4\right)}+\sqrt{x^2-1}=0\)
\(\Leftrightarrow\sqrt{x^2-1}\left(1-\dfrac{2\sqrt{x^2-1}}{\sqrt{2x^2+16x+18}+\left(2x+4\right)}\right)=0\)
Tới đây đơn giản rồi
@Võ Hồng Phúc( phúc xịp)
GIẢI PT: \(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
\(pt\Rightarrow\sqrt{x^2-1}=2x+4-\sqrt{2x^2+16x+18}\)
\(\Rightarrow\sqrt{\frac{1}{2}.\left(2x+4\right)^2-\frac{1}{2}.\left(2x^2+16x+18\right)}=2x+4-\sqrt{2x^2+16x+18}\)
Chia 2 vế cho \(\sqrt{2x^2+16x+18}\)
\(\Rightarrow\sqrt{\frac{\left(2x+4\right)^2}{2.\left(2x^2+16x+18\right)}-\frac{1}{2}}=\frac{2x+4}{\sqrt{2x^2+16x+18}}-1\)
Đặt \(\frac{2x+4}{\sqrt{2x^2+16x+18}}=a\)
\(\Rightarrow\sqrt{\frac{1}{2}a^2-\frac{1}{2}}=a-1\left(a\ge1\right)\)
Kết quả x = 1 nha , chính xác r nek
Giải pt
\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
GIẢI CHI TIẾT NHA
tìm đk của 2 cái căn và xét vế bên phải ta được đk là :x>1
\(\Leftrightarrow\sqrt{2x^2+16x+18}-6+\sqrt{x^2-1}=2x-2\)
\(\Leftrightarrow\frac{2x^2+16x+18-36}{\sqrt{2x^2+16x+18}+6}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x-1\right)\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(x+9\right)}{\sqrt{2x^2+16x+18}+6}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(\sqrt{x-1}\right)^2=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\frac{2\sqrt{x-1}\left(x+9\right)}{\sqrt{2x^2+16x+18}+6}+\sqrt{x+1}-2\sqrt{x-1}\right)=0\)
Xét cái trong ngoặc khó :(. Định CM nó >0
Giải phương trình:\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
giúp mình với
Đặt \(a=\sqrt{2x^2+16x+18};b=\sqrt{x^2-1}\left(a,b\ge0\right);\)
Ta có: \(a+b=\sqrt{a^2+2b^2}\Rightarrow a^2+2ab+b^2=a^2+2b^2\)
\(\Leftrightarrow b\left(2a-b\right)=0\)
TH1: \(\sqrt{x^2-1}=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}\left(TM\right)}\)
TH2: \(2\sqrt{2x^2+16x+18}=\sqrt{x^2-1}\Leftrightarrow7x^2+64x+72=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-32+3\sqrt{57}}{7}\left(TM\right)\\x=\frac{-32-3\sqrt{57}}{7}\left(KTM\right)\end{cases}}\)
Giải PT
\(\sqrt{2x+1}-\sqrt{18x+9}=\sqrt{32+16x}-18\)
\(\sqrt{2x+1}-\sqrt{18x+9}=\sqrt{32x+16}-18\left(đk:x\ge-\dfrac{1}{2}\right)\)
\(\Leftrightarrow\sqrt{2x+1}-3\sqrt{2x+1}-4\sqrt{2x+1}=-18\)
\(\Leftrightarrow6\sqrt{2x+1}=18\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow2x+1=9\)
\(\Leftrightarrow x=4\left(tm\right)\)
\(\sqrt{2x+1}-9\sqrt{2x+1}-16\sqrt{2x+1}=-18\)
\(-24\sqrt{2x+1}=-18\)
\(\sqrt{2x+1}=\dfrac{3}{4}\)
\(\sqrt{\left(2x+1\right)^2}=\dfrac{9}{16}\)
\(2x+1=\dfrac{9}{16}\)
\(x=\dfrac{-7}{32}\)
giải pt :
a, (x+5)(2-x)=3\(\sqrt{x^2+3x}\)
b, \(\sqrt[3]{\dfrac{2x}{x+1}}+\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2\)
c,\(\sqrt[5]{\dfrac{16x}{x-1}}+\sqrt[5]{\dfrac{x-1}{16x}}=\dfrac{5}{2}\)
d, \(\sqrt{5x^2+10x+1}=7-2x-x^2\)
e, \(\sqrt{2x^2+4x+1}=1-2x-x^2\)
\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
Giải phương trình
giải pt :
a,\(\sqrt[3]{\dfrac{2x}{x+1}}\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2\)
b,\(\sqrt[5]{\dfrac{16x}{x-1}}\sqrt[5]{\dfrac{x-1}{16xx}}=\dfrac{5}{2}\)
a, \(\sqrt[3]{\dfrac{2x}{x+1}}.\sqrt[3]{\dfrac{x+1}{2x}}=2\)
⇔ \(\left\{{}\begin{matrix}1=2\\x\ne0\&x\ne-1\end{matrix}\right.\)
Phương trình vô nghiệm
b, x = \(\dfrac{8}{125}\)