cho pt \(x^2-2mx-4m-4=0\)
Gọi x1,x2 là các nghiệm của pt trên.Tìm m để pt có 1 nghiệm nhỏ hơn -2018
x^2 - (2m-1)x+ m^2 =0
a) Tìm điều kiện của m để pt trên có nghiệm
b) Gọi x1,x2 là 2no pt trên.Tìm m để x1^2 +(2m-1)x2=8
Giúp mk với mk gấp quá
Cho pt x^2 -2mx - 4m-5=0
a) tính tổng và tích của hai nghiệm theo m
b) gọi x1, x2 là 2nghiệm của pt. Tìm m để pt có gai nghiệm thỏa mãn x1^2 + x2^2 - x1x2 = 2x1+2x2 +27
Cho pt : x^2 - 2mx + m^2 - m = 0 (1) ( m là tham số ). Tìm các giá trị của tham số m để pt (1) có 2 nghiệm phân biệt x1,x2 thỏa mãn x1^2 + x2^2 = 4 - 3x1x2
Δ=(-2m)^2-4(m^2-m)
=4m^2-4m^2+4m=4m
Để (1) có 2 nghiệm phân biệt thì 4m>0
=>m>0
x1^2+x2^2=4-3x1x2
=>(x1+x2)^2-2x1x2=4-3x1x2
=>(2m)^2+m^2-m=4
=>4m^2+m^2-m-4=0
=>5m^2-m-4=0
=>5m^2-5m+4m-4=0
=>(m-1)(5m+4)=0
=>m=1 hoặc m=-4/5(loại)
cho pt bậc hai ẩn x : \(2x^2+2mx+m^2-2=0\)
a) xác định m để pt có 2 nghiệm.
b) gọi x1,x2 là nghiệm của pt trên tìm giá trị lớn nhất của biểu thức: A=\(\left|2x_1x_2+x_1+x_2-4\right|\)
a, Phương trình có hai nghiệm khi
\(\Delta'=m^2-2\left(m^2-2\right)=-m^2+4\ge0\Leftrightarrow-2\le m\le2\)
b, Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)
\(A=\left|2x_1x_2+x_1+x_2-4\right|\)
\(=\left|m^2-2-m-4\right|\)
\(=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)
\(=\left|-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\right|\le\dfrac{25}{4}\)
\(maxA=\dfrac{25}{4}\Leftrightarrow m=\dfrac{1}{2}\)
Cho pt: x2 - 2mx + 4m = 0 (1) và x2 - mx + 10m = 0 (2)
Tìm m để pt (2) có một nghiệm bằng 2 lần một nghiệm của pt (1)
- Gọi \(x_1\) là một nghiệm của phương trình (1). Khi đó ta có:
\(x_1^2-2mx_1+4m=0\left(1'\right)\).
Vì phương trình (2) có một nghiệm bằng 2 lần nghiệm của phương trình (1) nên \(2x_1\) là một nghiệm của phương trình (2). Do đó:
\(\left(2x_1\right)^2-m.\left(2x_1\right)+10m=0\)
\(\Rightarrow4x_1^2-2mx_1+10m=0\left(2'\right)\)
Thực hiện phép tính \(4.\left(1'\right)-\left(2'\right)\) vế theo vế ta được:
\(4x_1^2-8mx_1+16m-\left(4x_1^2-2mx_1+10m\right)=0\)
\(\Rightarrow-6mx_1+6m=0\)
\(\Rightarrow6m\left(-x_1+1\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\x_1=1\end{matrix}\right.\)
*Với \(x_1=1\). Vì \(x_1=1\) là 1 nghiệm của phương trình (1) nên:
\(1^2-2m.1+4m=0\Leftrightarrow m=-\dfrac{1}{2}\)
Thử lại ta có \(m=0\) hay \(m=-\dfrac{1}{2}\).
Tìm điều kiện của tham số m để đt y = 2mx - 4m +3 (p) cắt (p) tại 2 điểm phân biệt có hoành độ lớn hơn 1
b) tìm m để Pt : mx^2 + 2 (m-2)x + m - 3 =0 có 2 nghiệm x1,x2 sao cho x1/x2 + x2/x1 =3
c) Tìm m để Pt : x^2 -2mx + m^2 -m =0 có 2 nghiệm x1,x2 thoả : x1^2 + x2^2 = 3x1x2
Giúp mình với ạ!!! Mình cảm ơn rất nhiều
Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi
Cho pt x2 – 2mx -4m -5=0
a) Giải pt khi m= -2
b) Tìm m để pt có 2 nghiệm x1,x2 thỏa mãn ½ x12 - ( m – 1 ) x1+x2 – 2m + 33/2 =4059
a) Thay m=-2 vào phương trình, ta được:
\(x^2+4x+3=0\)
a=1; b=4; c=3
Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho phương trình : 3x2 - 2(3m-1)x-4m=0 (1)
a) Giải pt với m = 0
b) Giải pt với m=-1
c) CMR pt luôn có nghiệm vs mọi m
d) Gọi x1 , x2 là nghiệm của pt . Tìm m để | x1 - x2|=1