- Gọi \(x_1\) là một nghiệm của phương trình (1). Khi đó ta có:
\(x_1^2-2mx_1+4m=0\left(1'\right)\).
Vì phương trình (2) có một nghiệm bằng 2 lần nghiệm của phương trình (1) nên \(2x_1\) là một nghiệm của phương trình (2). Do đó:
\(\left(2x_1\right)^2-m.\left(2x_1\right)+10m=0\)
\(\Rightarrow4x_1^2-2mx_1+10m=0\left(2'\right)\)
Thực hiện phép tính \(4.\left(1'\right)-\left(2'\right)\) vế theo vế ta được:
\(4x_1^2-8mx_1+16m-\left(4x_1^2-2mx_1+10m\right)=0\)
\(\Rightarrow-6mx_1+6m=0\)
\(\Rightarrow6m\left(-x_1+1\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\x_1=1\end{matrix}\right.\)
*Với \(x_1=1\). Vì \(x_1=1\) là 1 nghiệm của phương trình (1) nên:
\(1^2-2m.1+4m=0\Leftrightarrow m=-\dfrac{1}{2}\)
Thử lại ta có \(m=0\) hay \(m=-\dfrac{1}{2}\).