thu gọn S=1\(-\tan a+\tan^2a-\tan^3a+...\) với 0<a<\(\frac{\Pi}{4}\)
Chứng minh:
\(a,\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
\(b,\frac{1+2sina.cosa}{sin^2a-cos^2a}=\frac{tana+1}{tana-1}\)
c,\(sin^6a+cos^6a=1-3sin^2a.cos^2a\)
d,\(sin^2a-tan^2a=tan^6a\left(cos^2a-cot^2a\right)\)
e.\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)
\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)
\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)
\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)
\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)
\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)
Chứng minh
\(\frac{tan^3a}{sin^2a}-\frac{1}{sinacosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
Lời giải:
Ta có:
\(\frac{\tan ^3a}{\sin ^2a}-\frac{1}{\sin a\cos a}+\frac{\cot ^3a}{\cos ^2a}=\frac{\tan ^3a\cos ^2a+\cot ^3a\sin ^2a}{\sin ^2a\cos ^2a}-\frac{\sin a\cos a}{\sin ^2a\cos ^2a}\)
\(=\frac{\frac{\sin ^3a}{\cos ^3a}.\cos ^2a+\frac{\cos ^3a}{\sin ^3a}.\sin ^2a}{\sin ^2a\cos ^2a}-\frac{\sin a\cos a}{\sin ^2a\cos ^2a}\)
\(=\frac{\frac{\sin ^3a}{\cos a}+\frac{\cos ^3a}{\sin a}-\sin a\cos a}{\sin ^2a\cos ^2a}=\frac{\sin ^4a+\cos ^4a-\sin ^2a\cos ^2a}{\sin ^3a\cos ^3a}\)
\(=\frac{(\sin ^2a+\cos ^2a)(\sin ^4a+\cos ^4a-\sin ^2a\cos ^2a)}{\sin ^3a\cos ^3a}\)
\(=\frac{\sin ^6a+\cos ^6a}{\sin ^3a\cos ^3a}=\frac{\sin ^3a}{\cos ^3a}+\frac{\cos ^3a}{\sin ^3a}=\tan ^3a+\cot ^3a\)
Ta có đpcm.
Giúp em bài này với ạ , em chưa nghĩ ra được cách làm
Chứng minh
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=\frac{1}{sin^2a}\left(tan^3a-tana+cot^3a.tan^2a\right)\)
\(=\frac{1}{sin^2a}\left(tan^3a-tana+cota\right)=\left(1+cot^2a\right)\left(tan^3a-tana+cota\right)\)
\(=tan^3a-tana+cota+cot^2a.tan^3a-cot^2a.tana+cot^3a\)
\(=tan^3a-tana+cota+tana-cota+cot^3a\)
\(=tan^3a+cot^3a\)
tính giá trị của biểu thức:
B= \(\frac{\sin a+\cos a}{\cos a-sina}\) biết \(\tan a=-2\)
C= \(\sin^2a-\sin a.\cos a+\cos^2a\) biết \(\tan a=\frac{1}{2}\)
F= \(\frac{8\cos^3a-2\sin^3a+\cos a}{2\cos a-\sin^3a}\) biết \(\tan a=2\)
\(sin^2a-sina.cosa+cos^2a\)
\(\Leftrightarrow tan^2a-tana+1\)
Thay tana = 1/2
\(\left(\frac{1}{2}\right)^2-\frac{1}{2}+1=\frac{3}{4}\)
a/ cho sin a = \(\frac{-3}{5}\) và \(\frac{-\pi}{2}< a< 0\) . Tính cos a , tan a
b/ Rút gọn biểu thức : A = \(\frac{tana+cota}{1+tan^2a}\)
\(-\frac{\pi}{2}< a< 0\Rightarrow cosa>0\)
\(\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)
\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)
\(A=\frac{tana+cota}{1+tan^2a}=\frac{tana+\frac{1}{tana}}{1+tan^2a}=\frac{1+tan^2a}{\left(1+tan^2a\right)tana}=\frac{1}{tana}=cota\)
Chứng minh với mọi tam giác không vuông ABC có:
a, tan A + tan B + tan C = tan A . tan B . tan C
b, tan 2A + tan 2B + tan 2C = tan 2A . tan 2B . tan 2C ( A, B, C ≠ \(\frac{\text{π}}{4}\) )
\(A+B+C=180^0\Rightarrow tan\left(A+B\right)=-tanC\)
\(\Rightarrow\frac{tanA+tanB}{1-tanA.tanB}=-tanC\Leftrightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)
\(\Leftrightarrow tanA+tanB+tanC=tanA.tanB.tanC\)
\(2A+2B+2C=360^0\Rightarrow tan\left(2A+2B\right)=-tan2C\)
\(\Leftrightarrow\frac{tan2A+tan2B}{1-tan2A.tan2B}=-tan2C\)
\(\Leftrightarrow tan2A+tan2B+tan2C=tan2A.tan2B.tan2C\)
1) Chứng minh :
a) \(\frac{1+\cot a}{1-\cot a}=\frac{\tan a+1}{\tan a-1}\)
b)\(\frac{\sin^2a-\cos^2a+\cos^4a}{\cos^2a-\sin^2a+sin^2a}=\tan^4a\)
2) Cho hình thang ABCD (AB//CD), góc C = 300 ; góc D = 600 ; AB = 1 ; CD = 5 . Tính diện tích hình thang ABCD
b,ta có :\(\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a-sin^2a.cos^2a}{cos^2a-sin^2a.cos^2a}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^4a}{cos^4a}=\frac{sin^4a}{cos^4a}\)luon dung => dpcm
Rút gọn biểu thức sau:
a) \(\left(1-\cos a\right)\left(1+\cos a\right)\)
b) \(1+\sin^2a+\cos^2a\)
c) \(\sin a-\sin a\cos^2a\)
d) \(\sin^4a+\cos^4a+2\sin^2a\cos^2a\)
e)\(\tan^2a-\sin^2a\tan^2a\)
f) \(\cos^2a+\tan^2a\cos^2a\)
GIẢI GIÚP MIK VS M.N!!!!!!!
Cho hình chóp SABCD có SA vuông góc với đấy . SA = 3a , SB = 2a √3 . Tính tan góc giữa SAD và SBD