Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 23:12

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot25=15\cdot20=300\)

=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(3\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(4\right)\)

Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN đồng dạng với ΔACB

c: Ta có: ΔABC vuông tại A

mà AK là đường trung tuyến

nên AK=KC=KB

Ta có: KA=KC

=>ΔKAC cân tại K

=>\(\widehat{KAC}=\widehat{KCA}\)

Ta có: ΔAMN đồng dạng với ΔACB

=>\(\widehat{ANM}=\widehat{ABC}\)

Ta có: \(\widehat{KAC}+\widehat{ANM}\)

\(=\widehat{ABC}+\widehat{KCA}=90^0\)

=>AK\(\perp\)MN tại I

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)

=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)

=>BH=225/25=9(cm); CH=400/25=16(cm)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\)

=>\(AM\cdot15=12^2\)=144

=>AM=144/15=9,6(cm)

Ta có: AMHN là hình chữ nhật

=>AH=MN

mà AH=12cm

nênMN=12cm

Ta có: ΔANM vuông tại A

=>\(AN^2+AM^2=NM^2\)

=>\(AN^2+9,6^2=12^2\)

=>AN=7,2(cm)

Xét ΔIMA vuông tại I và ΔAMN vuông tại A có

\(\widehat{IMA}\) chung

Do đó: ΔIMA đồng dạng với ΔAMN

=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)

Cíuuuuuuuuuu
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 22:18

a: Ta có: AB=BC

nên B nằm trên đường trung trực của AC(1)

Ta có: CD=CA

nên D nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra BD là đường trung trực của AC

_____Teexu_____  Cosplay...
Xem chi tiết
Yuuki Akastuki
9 tháng 1 2019 lúc 14:14

- Ngu ít thôi =)

Kuroba Kaito
9 tháng 1 2019 lúc 14:37

A B C D I E

CM: a) Xét tam giác ABI và tam giác ADI

có AB = AD (gt)

góc BAI = góc IAD (gt)

AI : chung

=> tam giác ABI = tam giác ADI (c.g.c)

=> BI = ID (hai cạnh tương ứng)

b) Ta có: tam giác ABI = tam giác ADI (cmt)

=> góc ABI = góc ADI (hai góc tương ứng) (1)

Mà góc ABI + góc IBE = 1800 (2)

      góc ADI + góc IDC = 1800 (3)

Từ (1), (2),(3) suy ra góc IBE = góc IDC

Xét tam giác IBE và tam giác IDC

có góc EIB = góc DIC (đối đỉnh)

  IB = ID (cmt)

  góc IBE = góc IDC (cmt)

=> tam giác IBE = tam giác IDC

c,d tự làm

Bùi Thị Thanh Thuỷ
Xem chi tiết
Trịnh Trường Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 9:53

a: BD=căn 8^2+6^2=10cm

AH=6*8/10=4,8cm

b: Xét ΔADH vuông tại H và ΔCBA vuông tại A có

góc ADH=góc BCA

=>ΔADH đồng dạng với ΔCBA

c: Xét ΔADM và ΔACN có

AD/AC=DM/CN

góc ADM=góc ACN

=>ΔADM đồng dạng với ΔACN

Giaa Hann
Xem chi tiết

a: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

=>\(\widehat{ACB}=90^0\)

b: Xét (O) có

ΔCBD nội tiếp

CD là đường kính

Do đó: ΔCBD vuông tại B

Xét (O) có

\(\widehat{CAB}\) là góc nội tiếp chắn cung CB

\(\widehat{CDB}\) là góc nội tiếp chắn cung CB

Do đó: \(\widehat{CAB}=\widehat{CDB}\)

Xét ΔACH vuông tại H và ΔDCB vuông tại B có

\(\widehat{HAC}=\widehat{BDC}\)

Do đó: ΔACH~ΔDCB

c: Sửa đề: cắt AC tại E

Xét ΔEBA vuông tại B có BC là đường cao

nên \(AC\cdot AE=AB^2=\left(2R\right)^2=4R^2\)

Hà Mii
Xem chi tiết
Diệu Linh Trần Thị
Xem chi tiết
Nguyễn Phương HÀ
10 tháng 8 2016 lúc 14:46

Hỏi đáp Toán

Lightning Farron
10 tháng 8 2016 lúc 14:48

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

Hoàng Lê Bảo Ngọc
10 tháng 8 2016 lúc 14:52

a) Ta có : \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Vì \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0,\left(c-1\right)^2\ge0\) nên pt trên tương đương với \(\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\) \(\Leftrightarrow a=b=c=1\)

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\) (1)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ac\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0,\left(b-c\right)^2\ge0,\left(c-a\right)^2\ge0\)

\(\Rightarrow\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\) \(\Rightarrow a=b=c\)

c) Giải tương tự câu b) , bắt đầu từ (1)

Thị Huệ Trần
Xem chi tiết