a,Chứng minh rằng a(b-c)=ab-ac
b,Tính (a+b) (a+b);(a+b) (a-b);(a-b) (a-b)
a: Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=15^2+20^2=625\)
=>\(BC=\sqrt{625}=25\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot25=15\cdot20=300\)
=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(3\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(4\right)\)
Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)
=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Do đó: ΔAMN đồng dạng với ΔACB
c: Ta có: ΔABC vuông tại A
mà AK là đường trung tuyến
nên AK=KC=KB
Ta có: KA=KC
=>ΔKAC cân tại K
=>\(\widehat{KAC}=\widehat{KCA}\)
Ta có: ΔAMN đồng dạng với ΔACB
=>\(\widehat{ANM}=\widehat{ABC}\)
Ta có: \(\widehat{KAC}+\widehat{ANM}\)
\(=\widehat{ABC}+\widehat{KCA}=90^0\)
=>AK\(\perp\)MN tại I
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)
=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)
=>BH=225/25=9(cm); CH=400/25=16(cm)
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\)
=>\(AM\cdot15=12^2\)=144
=>AM=144/15=9,6(cm)
Ta có: AMHN là hình chữ nhật
=>AH=MN
mà AH=12cm
nênMN=12cm
Ta có: ΔANM vuông tại A
=>\(AN^2+AM^2=NM^2\)
=>\(AN^2+9,6^2=12^2\)
=>AN=7,2(cm)
Xét ΔIMA vuông tại I và ΔAMN vuông tại A có
\(\widehat{IMA}\) chung
Do đó: ΔIMA đồng dạng với ΔAMN
=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)
=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)
Tứ giác ABCD có AB=BC,CD=DA
a) Chứng minh rằng BD là đường trung trực của AC
b) Cho biết góc B=100o , góc D=70o, tính góc A và C
a: Ta có: AB=BC
nên B nằm trên đường trung trực của AC(1)
Ta có: CD=CA
nên D nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra BD là đường trung trực của AC
Cho tam giác ABC có AB < AC, tia phân giác của góc A cắt cạnh BC tại I. Trên cạnh AC lấy điểm D sao cho AD = AB.
a) Chứng minh rằng BI = ID.
b) Tia DI cắt tia AB tại E. Chứng minh rằng ΔIBE=ΔIDCΔIBE=ΔIDC.
c) Chứng minh BD // EC.
d) Cho ∠ABC=2∠ACB.∠ABC=2∠ACB. Chứng minh rằng AB + BI = AC.
CM: a) Xét tam giác ABI và tam giác ADI
có AB = AD (gt)
góc BAI = góc IAD (gt)
AI : chung
=> tam giác ABI = tam giác ADI (c.g.c)
=> BI = ID (hai cạnh tương ứng)
b) Ta có: tam giác ABI = tam giác ADI (cmt)
=> góc ABI = góc ADI (hai góc tương ứng) (1)
Mà góc ABI + góc IBE = 1800 (2)
góc ADI + góc IDC = 1800 (3)
Từ (1), (2),(3) suy ra góc IBE = góc IDC
Xét tam giác IBE và tam giác IDC
có góc EIB = góc DIC (đối đỉnh)
IB = ID (cmt)
góc IBE = góc IDC (cmt)
=> tam giác IBE = tam giác IDC
c,d tự làm
Cho góc xOy =60 độ.Trên tia Ox lấy điểm a,trên tia Oy lấy điểm B sao cho OA =OB.Trên tia phân giác của góc xOy lấy điểm C.
a,Chứng minh AC=BC
b,Chứng minh rằng Ac là tia phân giác của góc ACB
c,Chứng minh OC là đường trung trực của AB
Cho hình chữ nhật ABCD có AB=8cm,BC=6cm,AH vuông góc với BD (H thuộc BD) Gọi M,N lần lượt là trung điểm của DH,BC a)tính AH b)chứng minh rằng:∆ADH đồng dạng ∆ACB c) chứng minh rằng:∆ADM đồng dạng ∆ACN đ) chứng minh rằng:AM vuông góc với MN
a: BD=căn 8^2+6^2=10cm
AH=6*8/10=4,8cm
b: Xét ΔADH vuông tại H và ΔCBA vuông tại A có
góc ADH=góc BCA
=>ΔADH đồng dạng với ΔCBA
c: Xét ΔADM và ΔACN có
AD/AC=DM/CN
góc ADM=góc ACN
=>ΔADM đồng dạng với ΔACN
Cho (O;R) , có AB là đường kính . C thuộc (O) a/ Tính góc ACB b/ Vẽ đường cao CH của tg ACB và đường kính CD của (O) . Chứng minh tg ACH đồng dạng tg DCB c/ Tiếp tuyến tại B của (O) cắt tia AC . Chứng minh AC.AE=4R^2
a: Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
=>\(\widehat{ACB}=90^0\)
b: Xét (O) có
ΔCBD nội tiếp
CD là đường kính
Do đó: ΔCBD vuông tại B
Xét (O) có
\(\widehat{CAB}\) là góc nội tiếp chắn cung CB
\(\widehat{CDB}\) là góc nội tiếp chắn cung CB
Do đó: \(\widehat{CAB}=\widehat{CDB}\)
Xét ΔACH vuông tại H và ΔDCB vuông tại B có
\(\widehat{HAC}=\widehat{BDC}\)
Do đó: ΔACH~ΔDCB
c: Sửa đề: cắt AC tại E
Xét ΔEBA vuông tại B có BC là đường cao
nên \(AC\cdot AE=AB^2=\left(2R\right)^2=4R^2\)
a. Cho a^2 + b^2 + c^2 + 3= 2(a + b + c). Chứng minh rằng: a=b=c=1
b. Cho (a + b + c)^2 = 3(ab + ac + bc). Chứng minh rằng: a=b=c
c. Cho a^2 + b^2 + c^2 = ab + ac +bc. Chứng minh rằng: a=b=c
a)a2+b2+c2+3=2(a+b+c)
=>a2+b2+c2+1+1+1-2a-2b-2c=0
=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0
=>(a-1)2+(b-1)2+(c-1)2=0
=>a-1=b-1=c-1=0 <=>a=b=c=1
-->Đpcm
b)(a+b+c)2=3(ab+ac+bc)
=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0
=>a2+b2+c2-ab-ac-bc=0
=>2a2+2b2+2c2-2ab-2ac-2bc=0
=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0
=>(a-b)2+(b-c)2+(c-a)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
c)a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
=>2a2+2b2+c2=2ab+2bc+2ca
=>2a2+2b2+c2-2ab-2bc-2ca=0
=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0
=>(a-b)2+(b-c)2+(a-c)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
a) Ta có : \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Vì \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0,\left(c-1\right)^2\ge0\) nên pt trên tương đương với \(\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\) \(\Leftrightarrow a=b=c=1\)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\) (1)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0,\left(b-c\right)^2\ge0,\left(c-a\right)^2\ge0\)
\(\Rightarrow\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\) \(\Rightarrow a=b=c\)
c) Giải tương tự câu b) , bắt đầu từ (1)
Cho đoạn thẳng AB, điểm C cách đều 2 điểm A và B, điểm D cách đều hai điểm A và B(C và D nằm khác phía với AB).
a, Chứng minh rằng tia CD là tia phân giác của ACB
b, kết quả ở câu a có đúng không nếu C và D nằm cùng phía đối với AB?