Cho ABCvuông tại Abiết: a. AB = 5a, BC = 9a (Với a là sốthực dương)b. B = 50 độ, BC = 8cm.
Cho
ΔABC∆ABC
vuông tại A có phân giác BD, AB = 6 cm, AC = 8cm. Đường thẳng vuông góc với AC tại D cắt BC ở E.
a) Tính AD? DC?
b) Chứng minh rằng
Δ CED ∆ CED
đồng dạng với
Δ CBA∆ CBA
?
c) Kẻ DF // BC (F nằm trên BA). Chứng minh rằng
cho △ABCvuông tại A . Giải tam giác vuông trong các trường hợp sau:
a/ góc B=40 độ và AB=7cm. b/ góc C=30 độ và BC=16cm.
c/AB=18cm và AC=21cm d/ AC=12cm và BC=13cm
a: góc C=90-40=50 độ
sin C=AB/BC
=>7/BC=sin50
=>BC=9,14(cm)
=>\(AC\simeq5,88\left(cm\right)\)
b: góc B=90-30=60 độ
sin C=AB/BC
=>AB/16=1/2
=>AB=8cm
=>AC=8*căn 3(cm)
c: BC=căn 18^2+21^2=3*căn 85(cm)
tan C=AB/AC=6/7
=>góc C=41 độ
=>góc B=49 độ
d: AB=căn 13^2-12^2=5cm
sin C=AB/BC=5/13
=>góc C=23 độ
=>góc B=67 độ
Cho tam giác ABCvuông tại A, đường cao AH ( H thuộc cạnh BC), biết BH = 4cm, CH = 9cm. Gọi D,E là hình chiếu của H trên cạnh AB và cạnh AC
a) Tính độ dài đoạn DE.
b) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh MN =1/2 BC
c)Tính diện tích tứ giác DEMN
Câu 8: Cho tam giác ABC vuông tại A , có AB = 6cm , AC = 8cm, AM là
đường trung tuyến ứng với cạnh BC . Độ dài của cạnh AM là :
A. 10cm
B. 9cm
C. 5cm
D. 8cm
Xét \(\Delta ABC\) vuông tại \(A\) có:
\(BC^2=AB^2+AC^2\) (định lí pitago)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét \(\Delta ABC\) vuông tại \(A\) có:
\(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) (định lí đường trung tuyến ứng với cạnh huyền trong tam giác vuông)
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
\(\Rightarrow\) Chọn đáp án \(C\)
Cho ΔABC vuông tại A, có AB =6cm,AC=8cm. a) tính độ dài cạnh BC. b) kẻ đường phân giác BE của Δ ABC, kẻ ED vuông góc với BC (D thuộc BC). Chứng minh ΔABE=ΔHBE c) gọi F là giao điểm của AB và EH. Khi góc ABC =60 độ thì ΔFBC là tam giác gì?
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
c Xét ΔBHF vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBF chung
=>ΔBHF=ΔBAC
=>BF=BC
mà góc FBC=60 độ
nên ΔBFC đều
cho tam giác abc có A^=90 độ AB= 6cm và AC = 8cm a/ tính Bc? b/ tính sin B và Tan C? C/ gọi AH là đường cao tam giác ABC , tính cos BAH^,d/ Gọi M là trung điểm Bc từ M kẻ đường thẳng vuông góc với BC cắt AC tại T tính độ dài AT?
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
Cho ∆ABC vuông tại A có đường cao AH, hãy tính độ dài AH, BC, AB, AC biết BH=16a, CH=9a (với A là độ dài cho trước, a>0)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=9a\cdot16a=144a^2\)
\(\Leftrightarrow AH=12a\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=\left(12a\right)^2+\left(16a\right)^2=400a^2\)
hay AB=20a
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=16a+9a=25a
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=\left(25a\right)^2-\left(20a\right)^2=225a^2\)
hay AC=15a
Cho ∆ABC,AB=6cm,AC=8cm,BC=7cm.Tia phân giác góc A cắt BC tại D a,Tính BD,DC b,Từ D kẻ DE//AC,cắt AB tại E.Tính độ dài DE c,Từ A kẻ đường thẳng vuông góc với AD,cắt BC tại K.Chứng mình KB.KC=KC.DB
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{CD}{8}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{BC}{14}=\dfrac{7}{14}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{6}=\dfrac{1}{2}\\\dfrac{CD}{8}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=3\left(cm\right)\\CD=4\left(cm\right)\end{matrix}\right.\)
Vậy: BD=3cm; CD=4cm
Bài 7 Cho Δ ABCvuông tại C .Trên cạnh AB lấy điểm Dsao cho AD = AB. Kẻ qua D đường thẳng vuông góc với AB tại E . AE cắt CD tại I a) Chứng minh AE là phân giác góc CAB. b) CHứng minh AD là trung trực của CD . c) So sánh CD và BC .d) M là trung điểm của BC,DM cắt BI tại G, CG cắt DB .Chứng minh K là trung điểm của DB