H=|x-3|+|4+x|
Cho 2 đa thức: G(x) = 2\(x^5\) + 5 \(x^4\) - 10\(x^3\) - \(x^2\) - 9\(x^4+4x^2-8-4x\)
H(x) =\(-2x^4-8x^3+x^5+7x+3x^3+x^2-4\)
a) Thu gọn các đa thức G(x), H(x) và sắp xếp theo lũy thừa giảm dần của biến.
b) Tính G(x) + H(x) và G(x) - H(x)
c) Tìm x để G(x) = 2H(x)
a) G(x) = 2x5-4x4-10x3+3x2-4x-8
H(x) = x5-2x4-5x3+x2+7x-4
b) G(x)+H(x)=3x5-6x4-15x3+4x2+3x-12
G(x)-H(x) =x5-2x4-5x3+2x2-11x-4
c) G(x) = 2H(x)
2x5-4x4-10x3+3x2-4x-8=2( x5-2x4-5x3+x2+7x-4)
2x5-4x4-10x3+3x2-4x-8-2( x5-2x4-5x3+x2+7x-4)=0
2x5-4x4-10x3+3x2-4x-8-2x5+4x4+10x3-2x2-14x+8=0
x2-18x=0
x(x-18)=0
x=0 hoặc x-18=0
x=18
f(X)=7^5+x^4-2x^3+4
g(x)=x^4+6x^3-9x^2-2x-1
a, f(x)+g(x)=h(x)
b,f(x)-g(x)=h(x)
a: \(h\left(x\right)=7x^5+x^4-2x^3+4+x^4+6x^3-9x^2-2x-1=7x^5+2x^4+4x^3-9x^2-2x+3\)
b: \(h\left(x\right)=7x^5+x^4-2x^3+4-x^4-6x^3+9x^2+2x+1=7x^5-8x^3+9x^2+2x+5\)
Cho 2 đa thức :f (x)=3x^4+2x^2-2x^4+x^2-5x
g (x)=x^4-x^2-2x +6+3x^2
Tìm đa thức h(x) sao cho h(x )+g(x)=f(x)
Tính h (-1/3) h (3/2)
Tìm nghiệm đa thức h(x)
h(x) + g(x) = f(x)
=> h(x)= f(x) - g(x) = \(3x^4+2x^2-2x^4+x^2-5x-\left(x^4-x^2-2x+6+3x^2\right)=x^2-3x-6\)\(h\left(-\dfrac{1}{3}\right)=\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)-6=\dfrac{-44}{9}\)
\(h\left(\dfrac{3}{2}\right)=\left(\dfrac{3}{2}\right)^2-3\cdot\dfrac{3}{2}-6=-\dfrac{33}{4}\)
\(x^2-3x-6=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{6}\\x=\dfrac{3-\sqrt{33}}{6}\end{matrix}\right.\)
1:cho đa thưc. f(x)=2x3+x2-x4 và g(x)=-4x+3+x4-2x3 .a,tính : h(x)=f(x)+g(x). h(x)=f(x)-g(x). b,tính h(1/2)=? c,tìm nghiệm của h(x)
Bài 5: Cho hai đa thức:
P(x)= \(x^4+2x-6x^2+x^3-5+5x^2\) Q(x)=\(x^4-4x^2-2x+5x^3+1+x^2-6\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến
b) H(x)=P(x)-Q(x)
c) Tìm bậc của đa thức H(x)
d) Tính H(3);H(-3);H=(\(\dfrac{1}{3}\))
a: \(P\left(x\right)=x^4+x^3-x^2+2x-5\)
\(Q\left(x\right)=x^4+5x^3-3x^2-2x-5\)
b: \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=-4x^3+2x^2+4x\)
c: Bậc của H(x) là 3
a)\(P\left(x\right)=x^4+x^3-x^2+2x-5\)
\(Q\left(x\right)=x^4+5x^3-3x^2-2x-5\)
b)\(H\left(x\right)=x^4+x^3-x^2+2x-5-x^4-5x^3+3x^2+2x+5\)
\(H\left(x\right)=-4x^3+2x^2+4x\)
c) Bậc : 3
d)\(H\left(3\right)=-4.3^3+2.3^2+4.3=-4.27+2.9+12=-108+18+12=-78\)
\(H\left(-3\right)=-4.\left(-3\right)^3+2.\left(-3\right)^2+4.\left(-3\right)\)
\(H\left(-3\right)=-4.\left(-27\right)+2.9-12=108+18-12=114\)
\(H\left(\dfrac{1}{3}\right)=-4.\left(\dfrac{1}{3}\right)^3+2.\left(\dfrac{1}{3}\right)^2+\dfrac{4.1}{3}=-\dfrac{4.1}{27}+\dfrac{2.1}{9}+\dfrac{4}{3}\)
\(H\left(\dfrac{1}{3}\right)=-\dfrac{4}{27}+\dfrac{6}{27}+\dfrac{36}{27}=\dfrac{38}{27}\)
cân bằng PTHH:
d) Fe x O y + HNO 3 → Fe(NO 3 ) 3 + NO + H 2 O
e) Fe x O y + HNO 3 → Fe(NO 3 ) 3 + NO 2 + H 2
f) Fe x O y + HCl → FeCl 2y/x + H 2 O
g) Fe x O y + H 2 SO 4 → Fe 2 (SO 4 ) 2y/x + H 2 O
H=(x-1)^3 - x+2 (x^2 -2x+4) + 3(x+4) (x-4) =1/-2
\(H=\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)
\(=x^3-3x^2+3x-1-x^3-8+3\left(x^2-16\right)\)
\(=-3x^2+3x-9+3x^2-48=3x-57\)
Khi x=1/-2 thì \(H=3\cdot\dfrac{-1}{2}-57=-1,5-57=-58,5\)
cho các đa thức: f(x)=11x^4-3x^3-x^2-x-2 g(x)=3x^4+3x^3+5x^2+x-3 đặt h(x)=f(x)-g(x) a,tính căn của h(-3/2)-3/2
Đầu tiên tính h(x) em nhé. Ta đc h(x)=\(8x^4-6x^3-6x^2-2x+1\)
Đến đây thay \(x=\frac{-3}{2}\) vào là tính đc thôi
Dễ mà em "=.="
cho các đa thức: f(x)=11x^4-3x^3-x^2-x-2 g(x)=3x^4+3x^3+5x^2+x-3 đặt h(x)=f(x)-g(x)
a,tính căn của h(-3/2)-3/2
b,chứng minh rằng h(x)không có nghiệm nguyên
Cho đa thức P(x) = 2x ^ 4 - x ^ 2 + x - 2 Tìm các đa thức Q(x), H(x), R(x) sao cho:
a) Q(x) + P(x) = 3x ^ 4 + x ^ 3 + 2x ^ 2 + x + 1 .
b) P(x) - H(x) = x ^ 4 - x ^ 3 + x ^ 2 - 2
c) R(x) - P(x) = 2x ^ 3 + x ^ 2 + 1 .
a: Q(x)=3x^4+x^3+2x^2+x+1-2x^4+x^2-x+2
=x^4+x^2+3x^2+3
b: H(x)=2x^4-x^2+x-2-x^4+x^3-x^2+2
=x^4+x^3-2x^2+x
c: R(x)=2x^3+x^2+1+2x^4-x^2+x-2
=2x^4+2x^3+x-1