Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoc Huyen Nguyen
Xem chi tiết
Nam Tước Bóng Đêm
25 tháng 4 2016 lúc 20:25

13/4 bn nha

Võ Xuân Lê Khôi
25 tháng 4 2016 lúc 20:27

13/4 tick minh nha ban

Nguyễn Thúy Hường
25 tháng 4 2016 lúc 21:14

Bằng 13/4 tick đúng cho mk đi mk chỉ chi tiết choyeu

Lê Bảo Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 14:57

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
ysssdr
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 1 2022 lúc 21:04

Đặt \(2\sqrt{x+1}+\sqrt{4-x}=t\Rightarrow t^2-4=3x+4+4\sqrt{-x^2+3x+4}\)

Ta có:

\(2\sqrt{x+1}+\sqrt{4-x}\le\sqrt{\left(4+1\right)\left(x+1+4-x\right)}=5\)

\(\sqrt{x+1}+\sqrt{x+1}+\sqrt{4-x}\ge\sqrt{x+1}+\sqrt{x+1+4-x}\ge\sqrt{5}\)

\(\Rightarrow\sqrt{5}\le t\le5\)

Phương trình trở thành:

\(t^2-4=mt\) \(\Leftrightarrow f\left(t\right)=t^2-mt-4=0\)

\(ac=-4< 0\Rightarrow pt\) luôn có 2 nghiệm trái dấu (nghĩa là đúng 1 nghiệm dương)

Vậy để pt có nghiệm thuộc \(\left[\sqrt{5};5\right]\Rightarrow x_1< \sqrt{5}\le x_2\le5\)

\(\Rightarrow f\left(\sqrt{5}\right).f\left(5\right)\le0\)

\(\Rightarrow\left(1-\sqrt{5}m\right)\left(21-5m\right)\le0\)

\(\Rightarrow\dfrac{\sqrt{5}}{5}\le m\le\dfrac{21}{5}\)

Nguyễn Việt Lâm
19 tháng 1 2022 lúc 21:09

2.

Chắc đề đúng là "tìm m để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất"

Hàm bậc 2 có \(a=2>0\Rightarrow y_{min}=-\dfrac{\Delta}{4a}=-\dfrac{9\left(m+1\right)^2-8\left(m^2+3m-2\right)}{8}=-\dfrac{m^2-6m+25}{8}\)

\(\Rightarrow y_{min}=-\dfrac{1}{8}\left(m-3\right)^2-2\le-2\)

Dấu "=" xảy ra khi \(m-3=0\Rightarrow m=3\)

Thảo Nhi_Nekk
Xem chi tiết
Trịnh Hoàng Duy Khánh
2 tháng 8 2023 lúc 20:17

Ta có : \(\sqrt{x+1}\) có nghĩa khi `x >= -1`  Từ đk ta có :

\(x+2\left(1+\sqrt{x+1}\right)=x+1+2\sqrt{x+1}+1=\left(\sqrt{x+1}+1\right)^2\)

\(\Leftrightarrow\sqrt{x+2\left(1+\sqrt{x+1}\right)}=\sqrt{x+1}+1\)

\(x+2\left(1-\sqrt{x+1}\right)=x+1-2\sqrt{x+1}+1=\left(\sqrt{x+1}-1\right)^2\\ \Leftrightarrow\sqrt{x+2\left(1-\sqrt{x+1}\right)}=\left|\sqrt{x+1}-1\right|\)

Ta có : \(y=\sqrt{x+1}+1+\left|\sqrt{x+1}-1\right|\)  `(1)`

Ta bỏ dấu \(\left|\right|\) ở `1`

Ta có TH :

`-1<= x <= 0` ; lúc này \(\sqrt{x+1}-1\le0\)

nên : \(\left|\sqrt{x+1}-4\right|=1-\sqrt{x+1}\)

`1` trở thành : `y=2`

`x>0` lúc này \(\sqrt{x+1}-1>0\) nên

\(\left|\sqrt{x+1}-1\right|=\sqrt{x+1}-1\)

`1` trở thành : \(y=2\sqrt{x+1}>2\left(x>0\right)\)

Vì : \(y=\left\{{}\begin{matrix}2khi-1\le x\le0\\2\sqrt{x+1}kh\text{i}>0\end{matrix}\right.\)

gtnn của `y=2` với mọi \(x\in\left[-1;0\right]\)

tran thi mai
Xem chi tiết
Võ Thanh Quang
3 tháng 4 2015 lúc 22:24

\(=\sqrt{x^2-2x+1+1}+\sqrt{x^2+2x+1+1 }=\sqrt{\left(x-1\right)^2+1}+\sqrt{\left(x+1\right)^2+1}\)

Võ Thanh Quang
3 tháng 4 2015 lúc 22:29

Vì (x - 1)2 >= 0 và (x + 1)2 >= 0 nên Căn [(x - 1)2+1] + Căn [(x + 1)2+1] >= Căn [0 + 1] + Căn [0 + 1]

                                                  <=> Căn [(x - 1)2+1] + Căn [(x + 1)2+1] >= 2

 

Đặng Xuân Hiếu
4 tháng 4 2015 lúc 17:29

Bạn Võ Thanh Quang xem lại bài giải vì Min f(x) = 2 . Lúc dấu "=" xảy ra ta không tìm được x

Do f(x) >=0

Ta có [f(x)]2 = x2 - 2x + 2 + x2 + 2x + 2 + 2\(\sqrt{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}\)

                 = 2x2 + 4 + 2\(\sqrt{x^4+4}\)\(\ge\)8

    => f(x) >= 2\(\sqrt{2}\)

    => Min f(x) = 2\(\sqrt{2}\) <=> x = 0

 

 

trà a
Xem chi tiết
nguyễn thảo hân
Xem chi tiết
Phùng Minh Quân
11 tháng 7 2019 lúc 17:34

a) \(D=(0;+\infty)\backslash\left\{1\right\}\)

b) \(D=[2;+\infty)\)

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
19 tháng 1 2021 lúc 20:58

a, \(y=\dfrac{\sqrt{x-2}}{x}=\sqrt{\dfrac{1}{x}-\dfrac{2}{x^2}}\ge0\)

\(min=0\Leftrightarrow\dfrac{1}{x}-\dfrac{2}{x^2}=0\Leftrightarrow x=2\)

b, Áp dụng BĐT Cosi:

\(f\left(x\right)=\dfrac{x}{\sqrt{x-1}}=\dfrac{x-1+1}{\sqrt{x-1}}=\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\ge2\)

\(minf\left(x\right)=2\Leftrightarrow x=2\)