Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Phương Thảo
Xem chi tiết
Sakura Kinomoto
Xem chi tiết
Trần Hoàng Ngọc Diệp
Xem chi tiết
hattori heiji
27 tháng 1 2018 lúc 13:57

vì x+y+z=1

=> (x+y+z)3 =1

=> x3+y3+z3+3(x+y)(y+z)(x+z)=1

=> 1+ 3(x+y)(y+z)(x+z)=1

=> 3(x+y)(y+z)(x+z) =0

=> (x+y)(y+z)(x+z)=0

=> (x+y)=0 hoặc (y+z)=0 hoặc (x+z)=0

với x+y=0 => x=-y

thay x=-y vào x+y+z=1 ta được

z=1

thay x=-y vào x2+y2+z2=1

=> (-y)2+y2+z2=1

=> 2y2+1=1

=> 2y2=0

=> x=y=0

S=x2009+y2010+z2011

S= 0+0+1

S=1

Vậy S=1

bababa ânnnanana
Xem chi tiết
 Mashiro Shiina
8 tháng 12 2018 lúc 23:13

Ta có:

\(\left\{{}\begin{matrix}x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)=0\)

Theo đề: \(x+y+z=1\Leftrightarrow x;y;z\le1\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\1-y\ge0\\1-z\ge0\end{matrix}\right.\)

\(\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)\ge0\)

Dấu bằng xảy ra khi: \(x^2\left(1-x\right);y^2\left(1-y\right);z^2\left(1-z\right)=0\)

Kết hợp đk đầu bài x+y+z=1 suy ra x;y;z là hoán vị (0;0;1)

\(\Rightarrow S=1\)

Nguyễn Lê Phương Thảo
Xem chi tiết
Ko Quan Tâm
13 tháng 2 2016 lúc 15:23

ủng hộ mình lên 360 điểm nha các bạn

Nguyen Cao Diem Quynh
Xem chi tiết
Nguyen Cao Diem Quynh
24 tháng 8 2016 lúc 17:31

Aj giải giúp tui với.....! :-(

dbrby
Xem chi tiết
Con Heo
Xem chi tiết
Nguyễn Lê Ngọc Mai
Xem chi tiết