4n-4 chia hết cho 2n-1
tìm số tự nhiên n để
a,n + 9 chia hết cho n + 3 b,4n +11 chia hết cho 2n+1
tìm số tự nhiên n sao cho
1tìm n thuộc N* để
a 6 chia hết (n+1)
b(n+4) chia hết (n-1)
c(n+6) chia hết (n-1)
d(4n+3) + (2n-6)
2chứng tỏ rằng
a tổng của 3 số tự nhiên liên tiếp là 1 số chia hết cho 3
b tổng của 4 số tự nhiên liên tiếp là 1 một số không chia hết cho 4
tìm các số nguyên x sao cho x+10 chia hết cho x-1
tìm các số tự nhiên n sao cho 2n+15 chia hết cho n+3
a: =>x-1+11 chia hết cho x-1
=>\(x-1\in\left\{1;-1;11;-11\right\}\)
=>\(x\in\left\{2;0;12;-10\right\}\)
b: =>2n+6+9 chia hết cho n+3
=>\(n+3\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(n\in\left\{-2;-4;0;-6;6;-12\right\}\)
tìm số tự nhiên n để
a. 8n * 193 chia hết cho 4n+3
b. 15 chia hêt cho 2n+3
c. 2n+8 chia hết cho n+2
tìm số tự nhiên x,y để
a, (2x+3)*(y-5)=12
b, (4-2x)-(y+2)=18
Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
Có: 1n + 2n + 3n + 4n
= (1 + 2 + 3 + 4)n
= 10n
Vì 10 ⋮ 5 nên 10n ⋮ 5 (n ∈ N)
Vậy để 1n + 2n + 3n + 4n chia hết cho 5 thì n ∈ N.
Để 1n + 2n + 3n + 4n chia hết cho 5, ta cần tìm số tự nhiên n sao cho tổng này chia hết cho 5.
Ta có: 1n + 2n + 3n + 4n = 10n
Để 10n chia hết cho 5, ta cần n chia hết cho 5.
Vậy, số tự nhiên n cần tìm là các số chia hết cho 5.
⇒ Các số tự nhiên n chia hết cho 5.
--thodagbun--
Tìm số tự nhiên n để 4n-5 chia hết cho 2n-1
Tìm số tự nhiên n để: 4n+5 chia hết cho 2n+1
nói chung là mình rốt toán lắm chứ cũng ko giỏi đâu
Vì 4n+5 chia hết cho 2n+1
4n+2 chia hết cho 2n+1
nên 3 chia hết cho 2n+1
2n+1 thuộc ước của 3 ={1,3}
nếu 2n+1=3 thì n=1
nếu 2n+1=1 thì n=0
vậy n=0,n=1
Tìm số tự nhiên n để 4n+3 chia hết cho 2n+1
2n +1 chia hết cho 2n + 1
suy ra 2 ( 2n + 1 ) chia hết cho 2n + 1
= 4n + 2 chia hết cho 2n + 1
suy ra ; ( 4n + 3 ) - ( 4n + 2 ) chia hết cho 2n + 1
= 1 chia hết cho 2n + 1
=> 2n + 1 thuộc vào Ư( 1 ) = 1
=> n = 1
Tìm số tự nhiên n để 4n+3 chia hết cho 2n+1
Giải:Ta có:4n+3=4n+2+1=2(2n+1)+1
Để 4n+3 chia hết cho 2n+1 thì 1 phải chia hết cho 2n+1
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1,1\right\}\).Vì n là số tự nhiên nên \(n\ge0\) nên 2n+1\(\ge1\)
Nên chỉ có 2n+1=1 thỏa mãn nên n=0 thỏa mãn
Tìm số tự nhiên n để 4n-5 chia hết cho 2n-1
Ta có \(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=2-\frac{3}{2n-1}\)
Để 4n-5 chia hết cho 2n-1 thì 3 chia hết cho 2n-1
Hay \(2n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét bảng
2n-1 | 1 | -1 | 3 | -3 |
2n | 2 | 0 | 4 | -2 |
n | 1 | 0 | 2 | -1 |
Vậy \(n\in\left\{1;0;2;-1\right\}\)