Giai hệ phương trình:
a) \(\left\{{}\begin{matrix}6x^2+13xy+6y^2=0\\2x^2-x-y^2-y+2=0\end{matrix}\right.^{ }}\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2-6x+y^2+6y-2xy+9=0\\2x^2+3x+y-\left(3x+1\right)\sqrt{y}-2=0\end{matrix}\right.\)
Điều kiện: \(y\ge0\)
pt thứ nhất của hệ \(\Leftrightarrow\left(y-x+3\right)^2=0\) \(\Leftrightarrow y-x+3=0\) \(\Leftrightarrow y=x-3\)
Thay vào pt thứ hai của hệ, ta được \(2x^2+3x+x-3-\left(3x+1\right)\sqrt{x-3}-2=0\)
\(\Leftrightarrow2x^2+4x-5=\left(3x+1\right)\sqrt{x-3}\) \(\left(x\ge3\right)\)
\(\Rightarrow\left(2x^2+4x-5\right)^2=\left[\left(3x+1\right)\sqrt{x-3}\right]^2\)
\(\Leftrightarrow4x^4+16x^2+25+16x^3-20x^2-40x=\left(3x+1\right)^2\left(x-3\right)\)
\(\Leftrightarrow4x^4+16x^3-4x^2-40x+25=9x^3-21x^2-17x-3\)
\(\Leftrightarrow4x^4+7x^3+17x^2-23x+28=0\)
Đặt \(f\left(x\right)=4x^4+7x^3+17x^2-23x+28\)
\(f\left(x\right)=4x^4+7x^3+17x^2+4+4+...+4-23x+4\) (có 6 số 4 ở giữa)
\(f\left(x\right)\ge9\sqrt[9]{4x^4.7x^3.17x^2.4^6}-23x+4\) \(=\left(9\sqrt[9]{1949696}-23\right)x+4\)
Hiển nhiên \(9\sqrt[9]{1949696}>23\). Lại có \(x\ge3\) nên \(f\left(x\right)>0\), Như vậy pt \(f\left(x\right)=0\) vô nghiệm. Điều đó có nghĩa là phương trình đã cho vô nghiệm.
Số nghiệm thực của hệ phương trình \(\left\{{}\begin{matrix}3x^2-4xy+y^2=0\\x^2+2y=8\end{matrix}\right.\) là:
Lời giải:
$3x^2-4xy+y^2=0$
$\Leftrightarrow 3x(x-y)-y(x-y)=0$
$\Leftrightarrow (x-y)(3x-y)=0$
$\Rightarrow x-y=0$ hoặc $3x-y=0$
Nếu $x-y=0\Leftrightarrow x=y$. Thay vào pt $(2)$:
$x^2+2x=8$
$\Leftrightarrow x^2+2x-8=0$
$\Leftrightarrow (x-2)(x+4)=0$
$\Rightarrow x=2$ hoặc $x=-4$.
Vậy hpt có nghiệm $(x,y)=(2,2); (-4,-4)$
Nếu $3x-y=0$
$\Leftrightarrow 3x=y$. Thay vô pt $(2)$:
$x^2+6x=8$
$\Leftrightarrow x^2+6x-8=0$
$\Rightarrow x=-3\pm \sqrt{17}$
$\Rightarrow y=3(-3\pm \sqrt{17})$ (tương ứng)
Vậy tổng cộng hpt có 4 nghiệm $(x,y)$ thực.
giải hệ phương trình
\(\left\{{}\begin{matrix}\left(xy-2\right)^2+6y=3\left(\dfrac{1}{x}-\dfrac{3}{x^2}\right)\\y^3-4y^2+\dfrac{6}{x}+\left(y-1\right)\sqrt{\left(3y-2\right)}=\dfrac{9}{x^2}\end{matrix}\right.\)
Giải các hệ phương trình sau:a) \(\left\{{}\begin{matrix}\left(2x-y\right)^2-6x+3y=0\\x+2y=0\end{matrix}\right.\);b) \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x-y}{x+y}}+\sqrt{\dfrac{x+y}{2x-y}}=2\\3x+y=14\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
b.
ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)
Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:
\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)
\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)
\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)
Thay xuống pt dưới:
\(6y+y=14\Rightarrow y=2\)
\(\Rightarrow x=4\)
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}4x^2-4xy-14x-3y^2+y+10=0\\5\sqrt{xy}+2x+2y=6\sqrt{y}-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x^4+3x^2y+4x^2-2y^2+3y+2=0\\\sqrt{x\left(y-1\right)}+2y+2\sqrt{y-1}=3x+2\sqrt{x}+2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^6+3x^2-y^3-6y^2-15y-14=0\\\sqrt{xy+2x-y-2}+6x-2y=10\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+1\right)^2-y^2+6y-9=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+1\right)^2-y^2+6y-9=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y^2-6y+9\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y-3\right)^2=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+1+y-3\right)\left(x+1-y+3\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+y-2\right)\left(x-y+4\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
TH1: x+y-2=0
=>x=-y+2
\(2x^2+y^2-6y-1=0\)
=>\(2\left(-y+2\right)^2+y^2-6y-1=0\)
=>\(2\left(y^2-4y+4\right)+y^2-6y-1=0\)
=>\(3y^2-14y+7=0\)
\(\Delta=\left(-14\right)^2-2\cdot3\cdot7=196-42=154>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}y=\dfrac{14-\sqrt{154}}{6}\\y=\dfrac{14+\sqrt{154}}{6}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-y+2=\dfrac{-2+\sqrt{154}}{6}\\x=\dfrac{-2-\sqrt{154}}{6}\end{matrix}\right.\)
TH2: x-y+4=0
=>x=y-4
\(2x^2+y^2-6y-1=0\)
=>\(2\left(y-4\right)^2+y^2-6y-1=0\)
=>\(2\left(y^2-8y+16\right)+y^2-6y-1=0\)
=>\(3y^2-22y+31=0\)
\(\Delta=\left(-22\right)^2-4\cdot3\cdot31=112>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}y_1=\dfrac{22-\sqrt{112}}{2\cdot3}=\dfrac{11-\sqrt{28}}{3}\\y_2=\dfrac{22+\sqrt{112}}{2\cdot3}=\dfrac{11+\sqrt{28}}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=y-4=\dfrac{11-\sqrt{28}}{3}-4=\dfrac{-1-\sqrt{28}}{3}\\x=y-4=\dfrac{11+\sqrt{28}}{3}-4=\dfrac{-1+\sqrt{28}}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+1\right)^2-y^2+6y-9=0\\2x^2+y^2-6y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y^2-6y+9\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y-3\right)^2=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y-2\right)\left(x-y+4\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\\\left\{{}\begin{matrix}x-y+4=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2-y\\2\cdot\left(2-y\right)^2+y^2-6y-1=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=y-4\\2\cdot\left(y-4\right)^2+y^2-6y-1=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2-y\\3y^2-14y+7=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=y-4\\3y^2-22y+31=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-\dfrac{1+2\sqrt{7}}{3}\\y=\dfrac{7+2\sqrt{7}}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{-1+2\sqrt{7}}{3}\\y=\dfrac{7-2\sqrt{7}}{3}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{-1+2\sqrt{7}}{3}\\y=\dfrac{11+2\sqrt{7}}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{1+2\sqrt{7}}{3}\\y=\dfrac{11-2\sqrt{7}}{3}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
Vậy các cặp (x;y) thỏa mãn là: \(\left(-\dfrac{1+2\sqrt{7}}{3};\dfrac{7+2\sqrt{7}}{3}\right);\left(\dfrac{-1+2\sqrt{7}}{3};\dfrac{7-2\sqrt{7}}{3}\right);\left(\dfrac{-1+2\sqrt{7}}{3};\dfrac{11+2\sqrt{7}}{3}\right);\left(-\dfrac{1+2\sqrt{7}}{3};\dfrac{11-2\sqrt{7}}{3}\right)\)
\(\left\{{}\begin{matrix}3x^2-13xy-10y^2=0\\2x^2-y^2+x=-22\end{matrix}\right.\)giải hệ pt sau
10. giải hpt bằng phương pháp thế:
6) \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}2x+3y=2\\4x-y-1=0\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-2y=3\\2x-\dfrac{4}{3}y=1\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}5x+y=3\\2x+0,4y=1,2\end{matrix}\right.\)
giúp mk vs ạ mai mk học rồi
6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y
(Các câu khác tương tự nhé.)
Giải phương trình:
1. \(\left\{{}\begin{matrix}4x-2y=3\\6x-3y=5\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x-3y=5\\4x+6y=10\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}3x-4y+2=0\\5x+2y=14\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2x+5y=3\\3x-2y=14\end{matrix}\right.\)
1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)
=> Hệ có vô số nghiệm.
3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)