1,\(\left\{{}\begin{matrix}x^2+xy-3x+y=0\\x^4+3x^2y-5x^2+y^2=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\left(2x-1\right)^2+4\left(y-1\right)^2=22\\xy\left(x-1\right)\left(y-2\right)=1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^2-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
Giải HPT
\(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)
15) \(\left\{{}\begin{matrix}3x+2y=7\\x^2+y^2-7x+xy=0\end{matrix}\right.\)
16)\(\left\{{}\begin{matrix}2x+3y=5\\x^2+xy+y^2-4x=-1\end{matrix}\right.\)
>< giúp với ạ
giải các hệ phương tình sau :
1) \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x\left(3x+2y\right)\left(x+1\right)=12\\x^2+2y+4x-8=0\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x-3y=\dfrac{4y}{x}\\y-3x=\dfrac{4x}{y}\end{matrix}\right.\)
giúp mình với ạ ><
Giải hệ phương trình sau
\(\left\{{}\begin{matrix}\sqrt{x}-\sqrt{x-y-1}=1\\x+y^2+2y\sqrt{x}-y^2x=0\end{matrix}\right.\)
a, giải pt 1, \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
2, \(\sqrt{2x+1}+3\sqrt{4x^2-2x+1}=3+\sqrt{8x^3+1}\)
b, giải hpt 1, \(\left\{{}\begin{matrix}x^2+4y^2-5=0\\4x^2y+8xy^2+5x+10y-1=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2-2x+2y-3=0\\16x^2-8xy^2+y^4-2y+4=0\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x^2+y^2-xy+4y+1=0\\y\left(7-x^2-y^2+2xy\right)=2\left(x^2+1\right)\end{matrix}\right.\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+y^2=2xy+1\\2x^2+y^2=3x+y+2\end{matrix}\right.\)