Cho tam giác OAB vuông cân tại O với OA=OB=a. Độ dài của vecto u=12/4 OA - 5/2 OB
cho tam giác OAB vuông cân tại O với OA=OB= a. tính độ dài vecto u= \(\frac{21}{4}\)OA-\(\frac{5}{2}\)OB
Cho tam giác OAB vuông cân tại O, cạnh OA= a. Tính 2 O A → − O B → .
A. a
B. 1 + 2 a .
C. a 5 .
D. 2 a 2 .
Cho tam giác OAB vuông cân tại O, cạnh OA a = . Tính 2OA-OB
tam giác OAB vuông cân tại O \(\Rightarrow\)OA = OB = a.
2OA - OB = 2OA - OA = OA =a
\(2\cdot OA-OB=2\cdot OA-OA=OA=a\)
Cho tam giác vuông cân OAB với OA=OB=a. Dựng và tính độ dài các vectơ \(\frac{11}{7}\)vectơ OA - \(\frac{3}{7}\)vectơ OB
Cho tam giác OAB cân tại O. Gọi C và D lần lượt trên 2 cạnh OA và Ob. Sao cho AD vuông góc với OB và BC vuông góc với OA. CMR
a AD=BC và tam giác OCD cân
b Gọi M là giao điểm của BC và AD. CMR OM vuông góc vs AB, OM là tia phân giác góc O
c Chứng minh MA=MB
d CM AB//CD
Cho tam giác OAB vuông cân tại O, cạnh OA=4cm. Tính |2 vecto OA - vecto OB|
Đặt \(a=\left|2\overrightarrow{OA}-\overrightarrow{OB}\right|\Rightarrow a^2=4\overrightarrow{OA}^2+\overrightarrow{OB}^2-4\overrightarrow{OA}.\overrightarrow{OB}\)
\(\Rightarrow a^2=4OA^2+OB^2=4.4^2+4^2=4^2.5\)
\(\Rightarrow a=4\sqrt{5}\)
cho tam giác OAB .giả sử
{vecto OA + vecto OB = vecto OM
{vecto OA -vecto OB= vecto ON
a, khi nào thì điểm M nằm trên đường phân giác trọng của góc AOB?
b, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ngoài,,,,,,,,,,,,,,,,,,,,,,,,,,?
mình sửa lại ý
b, khi nào thì N nằm trên đường phân giác ngoài của góc AOB
cho tam giác OAB có OA=OB, AB=10cm. Tia phân giác của góc O cắt AB tại D. Độ dài AD=?
Cho hình vuông ABCD, cạnh 8cm. Tính độ dài các vecto sau:
a) vecto OA + vecto OB
b) vecto OA - vecto OB
c) 3 vecto OA - 2 vecto OB
d) 3/4 vecto OA + 5/2 vecto OB
a: Kẻ OH\(\perp\)AB
OH\(\perp\)AB
AD\(\perp\)AB
Do đó OH//AD
Xét ΔBAD có
O là trung điểm của BD
OH//AD
Do đó: H là trung điểm của AB
=>\(OH=\dfrac{AD}{2}=\dfrac{8}{2}=4\)
XétΔOAB có OH là trung tuyến
nên \(\overrightarrow{OA}+\overrightarrow{OB}=2\cdot\overrightarrow{OH}\)
=>\(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|=2\cdot OH=2\cdot4=8\)
b: \(\left|\overrightarrow{OA}-\overrightarrow{OB}\right|=\left|\overrightarrow{BO}+\overrightarrow{OA}\right|=\left|\overrightarrow{BA}\right|\)
\(=BA=8\left(cm\right)\)