If p and q are primes and \(x^2-px+p=0\) has distinct positive integral roots, find p and q.
If p and q are primes and has \(x^2-px+q=0\) distinct positive integral roots, find p and q .
Let a,b be the roots of equation \(x^2-px+q=0\) and let c,d be the roots of the equation \(x^2-rx+s=0\), where p,q,r,s are some positive real numbers. Suppose that :
\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}\)
is an integer. Determine a,b,c,d .
The rectangle ABCD is divided into 4 regions whose perimeters are indicated in the figure below,where X,Y,Z Are Distinct positive integers and X>Y .It is known that Z=\(\frac{X+Y}{3}\)and W<6.Find X
The rectangle ABCD is divided into 4 regions whose perimeters are indicated in the figure below,where X,Y,Z are distinct positive integers and X>Y .It is known that Z=\(\frac{Z+Y}{3}\)and W<6.Find X
Let a,b be the roots of equation \(x^2-px+q=0\) and let c,d be the roots of the equation \(x^2-rx+s=0\), where p,q,r,s are some positive real numbers. Suppose that :
\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}\)
is an integer. Determine a,b,c,d .
Ta có:
\(\hept{\begin{cases}ab=q\\a+b=p\end{cases}}\)và \(\hept{\begin{cases}cd=s\\c+d=r\end{cases}}\)
\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}=\frac{2\left(qc+sb+sa+qd\right)}{p^2+q^2+r^2+s^2}\)
\(=\frac{2\left(qr+sp\right)}{p^2+q^2+r^2+s^2}\le\frac{2\left(qr+sp\right)}{2\left(qr+sp\right)}=1\)
Với M = 1 thì \(\hept{\begin{cases}q=r\\p=s\end{cases}}\)
Tới đây thì không biết đi sao nữa :D
thôi bỏ bài này đi cũng được vì chưa tới lúc cần dung phương trình
1) The rectangle has length p and breath q (cm), where p and q are intergers. If p and q satisfy the equation pq+q=13 + q2
then the maxnium area of the rectangle
2) Let a,b and c be positive intergers such that ab + bc=518 and ab-ac=360. Find the largest value of the product abc.
P/s: As you may now, These are some questions from the 8 round of Math Violympic. Plz help me as much as you can! Thanks for all!
Ta có: \(pq+q=13+q^2\Leftrightarrow q\left(p+1\right)=13+q^2\)
Vì\(q^2⋮q\Leftrightarrow13⋮q\Leftrightarrow\left[{}\begin{matrix}q=1\\q=13\end{matrix}\right.\)
Nếu q =1 thì:\(p+1=14\Leftrightarrow p=13\)
\(\Rightarrow pq=13\left(cm^2\right)\)(1)
Nếu q=13 thì:\(13p+13=182\Leftrightarrow p=13\)
\(\Rightarrow pq=169\left(cm^2\right)\)(2)
Từ (1)(2) ta có: \(max\left(pq\right)=169\left(cm^2\right)\)
Bạn xem hộ mình sai ở đâu k
câu 2 thì dựa vào đây nhưng chưa đầy đủ đâu bạn làm nốt nhé https://hoc24.vn/hoi-dap/question/197024.html?pos=675443
Hey guys! I have to do a City's Math Violympic on March 9th ( who like me, raise hands, lol :)) so it is not enough time to solve this very difficult problem, right??? Plz help me,guys! God bless you all xx. Sending you a big hug!
Given the polynomial P= x^2 + ax +b. Find the values of a and b such that b has 2 roots that are 2 and 3.
a= -5 and b = -1
a= -1 and b = -6
a= 1 and b = 1
a= -5 and b = 6
(giải giùm mình nha các bạn)
every positive integer can be expressed as a sum of distinct of 2. note that 1 and 2 are power of 2. How many three - digit numbers are sums of exactly 9 distinct power of 2
(giúp mk với, mk cần gấp)
Find all primes p such that the number p2+11 has exactly six different divisors (including 1 and the number itself)
giúp mik với,mik cần gấp
p=2=>p^2+11=15(là hợp số) (loại)
p=3=>p^2+11=20(loại)
p=5=>p^2+11=36(loại)
Nói chubng là em ko hiểu đề bài ạ
Tìm tất cả số nguyên tố p sao cho số p2 + 11 có chính xác sáu ước số khác nhau (bao gồm 1 và số chính)
Đề đây
Tìm tất cả số nguyên tố p sao cho số p2 + 11 có chính xác sáu ước số khác nhau (bao gồm 1 và số chính)