hệ số của x3 trong kt: \(\left(2+x\right)^{10}\)
tìm số hạng chứa x^8 trong khai triển: \(\left(1+x^2\left(1-x\right)\right)^8\)
tìm hệ số của số hạng chứa x^5 trong khai triển (1+x+x2+x3)10
tìm hệ số của x^3 trong kt: (x2-x+2)10
tìm hệ số của x^4 trong kt: (1+x+3x2)10
Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:
a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)
Số hạng chứa \(x^8\) có:
\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)
Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)
b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)
\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)
\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)
Số hạng chứa \(x^5\) có:
\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)
Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)
tìm hệ số của số hạng chứa x^10 trong kt:
\(\left(1+x\right)^{10}\left(x+1\right)^{10}\)
từ đó suy ra \(S=\left(C^0_{10}\right)^2+\left(C^1_{10}\right)^2+...+\left(C^{10}_{10}\right)^2\)
Đầu tiên ta có \(\left(1+x\right)^{20}\) có SHTQ \(C_{20}^kx^k\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^{10}\) là \(C_{20}^{10}\) (1)
Ta cũng có khai triển:
\(\left(1+x\right)^{10}\left(x+1\right)^{10}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC^i_{10}x^{10+i-k}\)
Số hạng chứa \(x^{10}\Rightarrow10+i-k=10\Rightarrow i=k\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^{10}\) là:
\(\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^i=\sum\limits^{10}_{k=0}\left(C_{10}^k\right)^2=\left(C_{10}^0\right)^2+\left(C_{10}^1\right)^2+...+\left(C_{10}^{10}\right)^2\)
Mà từ (1) ta có hệ số của số hạng chứa \(x^{10}\) là \(C_{20}^{10}\Rightarrow S=C_{20}^{10}\)
tìm hệ số của x16 trong kt: P(x):\(\left(x^2-2x\right)^{10}\)
a: hệ số của số hạng chứa x9 trong kt \(\left(x^3-3x^2+2\right)^n\) biết\(\frac{A^{4_n}}{A^{3_{n+1}}-C_n^{n-4}}=\frac{24}{23}\)
b: hệ số của số hạng chứa x3 trong kt f(x)=\(\left(1+2x\right)^3+\left(1+2x\right)^4+...+\left(1+2x\right)^{22}\)
a/ \(\frac{A^4_n}{A_{n+1}^3-C_n^{n-4}}=\frac{24}{23}\Rightarrow n=5\)
Khai triển \(\left(2-3x^2+x^3\right)^5\)
\(\left\{{}\begin{matrix}k_0+k_2+k_3=5\\2k_2+3k_3=9\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_2;k_3\right)=\left(1;3;1\right);\left(2;0;3\right)\)
Hệ số của số hạng chứa \(x^9\):
\(\frac{5!}{1!.3!.1!}.2^1.\left(-3\right)^3+\frac{5!}{2!.3!}.2^2.\left(-3\right)^0=-1040\)
b/ SHTQ của khai triển: \(\left(1+2x\right)^n\) là: \(C_n^k2^kx^k\)
\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển tổng quát là \(C_n^32^3\)
\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển của \(f\left(x\right)\): \(2^3.\sum\limits^{22}_{n=3}C_n^3\)
Tính tổng \(C_3^3+C_4^3+C_5^3+...+C_{22}^3\)
\(=C_4^4+C_4^3+C_5^3+...+C_{22}^3\)
\(=C_5^4+C_5^3+...+C_{22}^3\)
\(=C_6^4+C_6^3+...+C_{22}^3=...=C_{23}^4\)
Vậy \(2^3\sum\limits^{22}_{n=3}C_n^3=2^3.C_{23}^4\)
Tìm hệ số của số hạng chứa x3 trong khai triển \(\left(x^3+\dfrac{1}{x}\right)^5\) (với x\(\ne\) 0)
SHTQ là: \(C^k_5\cdot\left(x^3\right)^{5-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_5\cdot x^{15-4k}\)
Số hạng chứa x^3 tương ứng với 15-4k=3
=>4k=12
=>k=3
=>Hệ số là \(C^3_5=10\)
Để tìm hệ số của số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 , ta sử dụng công thức tổng hạng:
Tổng hạng = ∑ C(n, k)
Trong đó:
C(n, k) là số cấu hình có k phần tử trong tổng hạng nn là số lượng phần tử trong tổng hạngk là số lượng phần tử không chứa xVì ta chỉ quan tâm đến số hạng chứa x3, nên không quan tâm đến số lượng phần tử trong tổng hạng n.
Số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 (với x ≠ 0) là 2.
Hệ số của số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 (với x ≠ 0) là 2/3.
a.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(1+x^2\right)^{12}\)
b.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(2x-1\right)^{10}\)
HELP ME!
tìm hệ số của x^3 trong kt:
\(A\left(x\right)=\left(1+x\right)^3+\left(1+x\right)^4+...+\left(1+x\right)^{50}\\\)
\(B\left(x\right)=\left(1+2x^3\right)+\left(1+2x^4\right)+\left(1+2x\right)^{22}\)
\(\left(1+x\right)^n\) có SHTQ \(C_n^kx^k\)
\(\Rightarrow\) số hạng chứa \(x^3\) có \(k=3\)
Hệ số:
\(T=C_3^3+C_4^3+C_5^3+...+C_{50}^3\)
\(T=C_4^4+C_4^3+C_5^3+...+C_{50}^3\) (do \(C_3^3=1=C_4^4\))
\(T=C_5^4+C_5^3+C_6^3+...+C_{50}^3\)
\(T=C_6^4+C_6^3+...+C_{50}^3=...=C_{51}^4\)
Chắc bạn viết nhầm biểu thức \(B\left(x\right)\), có lẽ biểu thức đúng là thế này:
\(B\left(x\right)=\left(1+2x\right)^3+\left(1+2x\right)^4+...+\left(1+2x\right)^{22}\)
Số hạng tổng quát của khai triển \(\left(1+2x\right)^n\) là \(C_n^k2^kx^k\)
Số hạng chứa \(x^3\) có hệ số \(C_n^32^3\)
\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển \(B\left(x\right)\) là:
\(T=2^3\left(C_3^3+C_4^3+...+C_{22}^3\right)=2^3.C_{23}^4\) (chứng minh tổng trong ngoặc tương tự câu trên)
1: hệ số của số hang chứa x8 trong khai triển \(\left(\frac{1}{x^4}+\sqrt[2]{x^5}\right)^{12}\)
2: hệ số của số hang chứa x16 trong khai triển \(\left[1-x^2\left(1-x^2\right)\right]^{16}\)
3: hệ số của số hạng chứa x5 trong khai triển \(x\left(1-2x\right)^5+x^2\left(1+3x\right)^{10}\)
\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)
Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn
Vậy trong khai triển trên ko có số hạng chứa \(x^8\)
b/ \(\left(1-x^2+x^4\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)
\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)
Hệ số của số hạng chứa \(x^{16}\):
\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)
c/ SHTQ của khai triển \(\left(1-2x\right)^5\) là \(C_5^k\left(-2\right)^kx^k\)
Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)
SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)
Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)
Bài 1:
a.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(1+x^2\right)^{12}\)
b.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(2x-1\right)^{10}\)
Giúp mk vs ạ!!!