Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
16 tháng 6 2017 lúc 15:35

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

LGBT Cũng Là Con Người
Xem chi tiết
Nguyễn Quốc Gia Huy
Xem chi tiết
Nguyễn Bá Minh
Xem chi tiết
Phan Văn Hiếu
19 tháng 8 2017 lúc 13:23

a) dat x-1=a

x=a+1

\(a+1+\sqrt{5+\sqrt{a}}=6\)

\(5-a=\sqrt{5+\sqrt{a}}\)

\(25-10a+a^2=5+\sqrt{a}\)

\(20-10a+a^2-\sqrt{a}=0\)

(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0

Nguyễn Bá Minh
19 tháng 8 2017 lúc 14:43

đúng nhưng b,c,d đâu

Phan Văn Hiếu
20 tháng 8 2017 lúc 17:01

ý c)  dk tu viet

\(\left(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}\right)^2=4\)

\(x-\sqrt{x^2-1}+x+\sqrt{x^2-1}+2\sqrt{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)}=4\)

\(2x+2\sqrt{x^2-x^2+1}=4\)

\(2x+2=4\)

2x=2

x=1

Lee Yeong Ji
Xem chi tiết

\(\sqrt{x^2-x+1}+\sqrt{x^2-9x+9}=2x\)

=>\(\sqrt{x^2-x+1}-x+\sqrt{x^2-9x+9}-x=0\)

=>\(\dfrac{x^2-x+1-x^2}{\sqrt{x^2-x+1}+x}+\dfrac{x^2-9x+9-x^2}{\sqrt{x^2-9x+9}+x}=0\)

=>\(\left(-x+1\right)\left(\dfrac{1}{\sqrt{x^2-x+1}+x}+\dfrac{9}{\sqrt{x^2-9x+9}+x}\right)=0\)

=>-x+1=0

=>x=1

Hoàng Đình Đại
Xem chi tiết
Linh nè
Xem chi tiết
Minh Tuấn Phạm
Xem chi tiết
Trần Bảo Như
Xem chi tiết
Cô Hoàng Huyền
6 tháng 8 2018 lúc 10:12

ĐK: \(x^3+4x^2+5x+6\ge0\)

Ta có: \(x^3+4x^2+5x+6=\left(x+3\right)\left(x^2+x+2\right);x^2+2x+5=\left(x+3\right)+\left(x^2+x+2\right)\)

Đặt \(\hept{\begin{cases}\sqrt{x+3}=u\\\sqrt{x^2+x+2}=v\end{cases}}\)

Vậy nên ta có phương trình: \(\)\(u^2+v^2=\frac{5}{2}uv\)

\(\Leftrightarrow2u^2-5uv+2v^2=0\Leftrightarrow\orbr{\begin{cases}u=2v\\u=\frac{1}{2}v\end{cases}}\)

Với u = 2v ta có: \(\sqrt{x+3}=2\sqrt{x^2+x+2}\Leftrightarrow x+3=4x^2+4x+8\)

\(\Leftrightarrow4x^2+3x+5=0\)   (Vô nghiệm)

Với \(u=\frac{1}{2}v\) ta có: \(2\sqrt{x+3}=\sqrt{x^2+x+2}\Leftrightarrow4x+12=x^2+x+2\)

\(\Leftrightarrow x^2-3x-10=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\left(tmđk\right)\)

Vậy phương trình có nghiệm \(x\in\left\{5;-2\right\}\)