Tìm GTNN:
\(C=13x^2+4y^2-12xy-2x-4y+10\)
tìm GTNN, GTLN
\(A=x^2-2x+2+4y^2+4y\)
\(B=13x^2+4x-12xy+4y^2+1\)
\(A=x^2-2x+2+4y^2+4y\)
\(A=\left(x^2-2x\cdot1+1\right)+\left(4y^2+4y\right)+1\)
\(A=\left(x-1\right)^2+4\left(y^2+y\right)+1\)
Do \(\left(x-1\right)^2>\) hoặc bằng 0 và \(4\left(y^2+y\right)\)> hoặc bằng 0
nên để A đạt GTNN thì \(\left\{{}\begin{matrix}x-1=0\\y^2+y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
f(x)=(2x-3)^2+(x+4)^2-(3x^2+5x-2) tìm GTNN
F=2x^2+3y^2-8x+24y-7 tìm GTNN
F=-5x^2-4y^2+20x-32y+9 tìm GTLN
F=x^2+y^2-x+y-3 tìm GTNN
F=F=5x^2+y^2-4xy-6x+20 tìm GTNN
F=-13x^2-4y^2+12xy+20x+37
F=5x^2+9y^2-12xy+24x-48y+100
Cho x+y=5 Cho A= x^3+y^3-8(x^2+y^2)+xy+2 tính GTLN của A
Cho x+y+2=0 Tìm min của B=2(x^3+y^3)-15xy+7
Cho x+y+2=0 tìm min của C=x^4+y^4-(x^3+y^3)+2x^2y^2+2xy(x^2+y^2)+13xy
tìm x,y biết:
13x2+y2+4x-6xy-8y+41=0
18x2+4y2+12xy+24x-4y+26=0
Viết các biểu thức sau dưới dạng bình phương của 1 tổng , 1 hiệu :
a) 5x^2 + y^2 + z^2 + 4xy - 2xz
b) 9x^2 + 25 - 12xy + 2y^2 - 10y
c) 13x^2 + 4x - 12xy + 4y^2 + 1
d) x^2 + 4y^2 + 4x - 4y +5
tìm GTNN hoặc GTLN của
a) 5x^2-12xy+9y^2-4x+4
b) -x^2-2y^2+12x-4y+7
c)4y^2+10x^2+12xy+6x+7
d)3-10x^2-4xy-4y^2
e)x^2-5x+y^2-xy-4y+16
giúp mình với T_T
thank nhiều nha ! :)
a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)
c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)
d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)
e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng
tìm giá trị nhỏ nhất
A=3x^2+14y^2-12xy+6x-8y+10
B=2x^2+4y^2+4xy-4x-4y+2013
Tim cac so x va y thoa man dieu kien : 13x2 +4y2 +12xy + 26x + 4y + 26 =0
bt3: tìm Min, Max
C= 4x2 + y2 - 12x +4y + 2030
D= 13x2 + 4x - 12xy + 4y2 - 15
a: \(C=4x^2-12x+9+y^2+4y+4+2017\)
\(=\left(2x-3\right)^2+\left(y+2\right)^2+2017\ge2017\)
Dấu '=' xảy ra khi x=3/2 và y=-2
b: \(D=9x^2-12xy+4y^2+4x^2+4x+1-16\)
\(=\left(3x-2y\right)^2+\left(2x+1\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-1/2 và y=-3/4
tim gtnn cua:
1/ B = 3x^2 + y^2 + 4x - y
2/ E=3x^2 + 4y^2 + 4xy + 2x - 4y + 26
3/ F=5x^2 + 9y^2 -12xy + 24x - 48y + 82