3x-(x-5)=25
Phân tích đa thức \(18x^3-\dfrac{8}{25}x\) thành nhân tử
a. \(\dfrac{2}{25}x\left(9x^2-4\right)=\dfrac{2}{25}x\left(3x-2\right)\left(3x+2\right)\)
b. \(2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
Cách phân tích nào đúng, a hay b. Giải thích vì sao?
Bài 3: Giải các phương trình sau:
a, 2x3 - 50x = 0
b, 2x (3x - 5) - (5 - 3x)
c, 9(3x - 2) = x(2 - 3x)
d, (2x - 1)2 - 25 = 0
e, 25x2 - 2 = 0
f, x2 - 25 = 6x - 9
g, 5x(x - 3) - 2x + 6 = 0
h, 3x(x - 7) - 2(x - 7) = 0
i, 7x2 - 28 = 0
j, (2x + 1) + x(2x + 1) = 0
k, (x + 2)2 - (x - 2)(x + 2) = 0
l, x3 + 5x2 - 4x - 20 = 0
m, x2 - 25 + 2(x + 5) = 0
n, x3 - 3x + 2 = 0
o, x2 - 6x + 8 = 0
p, x2 - 5x - 14 = 0
q, (x - 2)2 - (x - 3)(x + 3) = 6
r, (2x - 1)2 - (2x + 5)(2x - 5) = 18
2(x + 3) - x mũ 2 - 3x = 0
(3x - 5 ) mũ 2 - ( x -1) = 0
3x ( x - 5 ) - x mũ 2 +25 = 0
a) \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3;2\right\}\)
c) \(3x\left(x-5\right)-x^2+25=0\)
\(\Leftrightarrow3x\left(x-5\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow3x\left(x-5\right)-\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\2x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\2x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{5}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{5;\frac{5}{2}\right\}\)
Tìm x
2x3-50x=0
2x(3x-5)-(5-3x)=0
9(3x-2)=x(2-3x)
(2x-1)2-25=0
25x2-2=0
X2-25=6x-9
(2x-1)2-(2x+5)(2x-5)=18
\(2x\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\left(2x+1\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)
\(9\left(3x-2\right)-x\left(2-3x\right)=0\)
\(9\left(3x-2\right)+x\left(3x-2\right)=0\)
\(\left(9+x\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)
\(\left(2x-1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x^2-25\right)=0\)
\(\Leftrightarrow x^2-25=0\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm5\)
3x+15/x^2-25 + 3/x+5 = 2x/x-5
\(\Leftrightarrow3x+15+3\left(x-5\right)=2x^2+10x\)
\(\Leftrightarrow2x^2+10x=3x+15+3x-15=6x\)
=>2x(x+2)=0
=>x=0 hoặc x=-2
\(\dfrac{3x+15}{x^2-25}+\dfrac{3}{x+5}=\dfrac{2x}{x-5}\)
\(ĐK:x\ne\pm5\)
\(\Leftrightarrow\dfrac{3x+15+3\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{2x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow3x+15+3\left(x-5\right)=2x\left(x+5\right)\)
\(\Leftrightarrow3x+15+3x-15=2x^2+10x\)
\(\Leftrightarrow2x^2+4x=0\)
\(\Leftrightarrow2x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\) ( tm )
x-2=24
5.(5-x)=-25
3x-7=22.5
a) x - 2 = 24
x = 24 + 2
x = 26
b) 5.(5 - x) = -25
5 - x = -25 : 5
5 - x = -5
x = 5 - (-5)
x = 5 + 5
x = 10
c) 3x - 7 = 22.5
3x - 7 = 4.5
3x - 7 = 20
3x = 20 + 7
3x = 27
3x = 33 (cùng cơ số)
⇒ x = 3
\(x-2=24\)
\(x=24+2\)
\(x=26\)
________
\(5\left(5-x\right)=-25\)
\(5-x=-25:5\)
\(5-x=-5\)
\(x=5+5\)
\(x=10\)
_____
\(3^x-7=2^2.5\)
\(3^x-7=4.5=20\)
\(3^x=20+7\)
\(3^x=27=3^3\)
\(=>x=3\)
3x+5 phần x^2-5x + 25-x phần 25-5x
Đề bài là: \(\frac{3\text{x}+5}{x^2-5\text{x}+25}-\frac{x}{25-5\text{x}}\)
hay: \(\frac{3\text{x}+5}{\frac{x^2-5\text{x}+25-x}{25-5\text{x}}}\)
thế bạn?
Cho hai biểu thức A = x + 2 x − 5 và B = 3 x + 5 + 20 − 2 x x − 25 với x ≥ 0 , x ≠ 25
2) Chứng minh rằng B = 1 x − 5 .
Với x ≥ 0 , x ≠ 25 thì B = 3 x + 5 + 20 − 2 x x − 15 = 3 x + 5 + 20 − 2 x x + 5 x − 5
= 3 x − 5 + 20 − 2 x x + 5 x − 5 = 3 x − 15 + 20 − 2 x x + 5 x − 5 = x + 5 x + 5 x − 5 = 1 x − 5
(điều phải chứng minh)
Rút gọn P
\(P=\dfrac{\sqrt{x}}{\sqrt{x}+5}+\dfrac{2\sqrt{x}}{\sqrt{x}-5}-\dfrac{3x+25}{x-25}\left(x\ge0,x\ne25\right)\)
\(P=\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{5\sqrt{x}-25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{5}{\sqrt{x}+5}\)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}+5}+\dfrac{2\sqrt{x}}{\sqrt{x}-5}-\dfrac{3x+25}{x-25}\\ \Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}-\dfrac{3x+25}{\left(\sqrt{x}+5\right)}\\ \Leftrightarrow P=\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\\ \Leftrightarrow P=\dfrac{5\sqrt{x}-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\\ \Leftrightarrow P=\dfrac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(\Leftrightarrow P=\dfrac{5}{\sqrt{x}+5}\)
-> \(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}-\dfrac{3x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{5\sqrt{x}-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{5}{\left(\sqrt{x}+5\right)}\)