Bài 1: Tìm giá trị của biểu thức sau:
A=\(4x^2-4xy+5y^2+20x-6y+2045\)
Tìm GTNN của biểu thức sau: A=4x^2-4xy+5y^2+20x-6y+2044
Tìm GTNN của biểu thức sau: A=4x^2-4xy+5y^2+20x-6y+2044
\(A=4x^2-4xy+5y^2+20x-6y+2044\)
\(=\left(4x^2-4xy+y^2\right)+20x-6y+4y^2+2044\)
\(=\left(2x-y\right)^2+10\left(2x-y\right)+25+\left(4y^2+4y+1\right)+2018\)
\(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\ge2018\)
Dấu "=" xảy ra tại \(y=-\frac{1}{2};x=-\frac{11}{4}\)
Ta có \(A=4x^2-4xy+5y^2+20x-6y+2044\)
\(=4x^2-4x\left(y-5\right)+\left(y-5\right)^2+4y^2+4y+1+2018\)
\(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\)
Vì...\(\Rightarrow A\ge2018\)
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+5=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{11}{4}\\y=-\frac{1}{2}\end{cases}}}\)
Mấy bạn giải chi tiết ra giùm mình
Tìm giá trị nguyên x,y thỏa mãn hệ thức sau
x2 - 4xy + 5y2 = 100
4x2 + 2y2 - 4xy + 20x - 6y + 29 = 0
1. x2-4xy + 5y2 = 100\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=100\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=0+10^2=6^2+8^2\)\(\Leftrightarrow\int^{x-2y=0}_{y=10}\)
hoặc \(\int^{x-2y=10}_{y=0}\) hoặc \(\int^{x-2y=6}_{y=8}\) hoặc \(\int^{x-2y=8}_{y=6}\)
từ đó ta tìm được (x;y)= ( 20;10);(10;0) ; ( 24;6) ; ( 20; 6)
2. 4x2 + 2y2 - 4xy + 20x - 6y + 29 = 0 \(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y^2-10y+25\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y-5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left(2x-y+5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\int^{2x-y+5=0}_{y+2=0}\Leftrightarrow\int^{x=\frac{-7}{2}}_{y=-2}\) loại vì x, y nguyên
vậy phương trình đã cho không có nghiệm nguyên
Tìm giá trị nhỏ nhất của biểu thức:
A=x^2+4x+7
B=x^2-20x+101
C=x^2-4xy+5y^2+10x-22y+28
\(A=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)
\(A_{min}=3\) khi \(x=-2\)
\(B=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
\(B_{min}=1\) khi \(x=10\)
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left(x;y\right)=\left(-3;1\right)\)
tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau
a)A=x2-6x+13
b)B=2x2+16x-17
c)C=4x-x2
d)D=x2-4xy+5y2+6y+17
a) A = x2 - 6x + 13 = x2 - 2.x.3 + 33 +4 = (x-3)2 + 4 >= 4 suy ra minA=4
mấy câu kia giải tương tự
Bài 1: Tìm gtln của các bth
a)A= -x^2 – 4x -2
b)B= -2x^2 – 3x +5
c)C= (2-x)(x + 4)
d)D= -8x^2 + 4xy – y^2 +3
Bài 2:CMR: Giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a)A=25x^2 – 20x + 7
b)B=9x^2 – 6xy + 2y^2 + 1
c)E=x^2 – 2x + y^2 – 4y +6
Bài 1:
a) Ta có: \(A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-2
b) Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)
c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 2:
a) Ta có: \(=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)
b) Ta có: \(B=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)
c) Ta có: \(E=x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)
Bài 2.17) Tìm giá trị nhỏ nhất của các biểu thức sau
a) f(x,y)=x2+y2-6x+5y+1
b) g(x,y)= 5x2+y2+10+4xy-14x-6y
bài 1 chứng minh đẳng thức sau
x(x+1)(x+2)=x^3+3x^2+2x
bài 2 tìm x biết
(3x-2)(4x-5)-(2x-1)(6x+2)=0
bài 3 chứng minh rằng giá trị của biểu thức P không phụ thuộc giá trị của biến
P=-3xy(-x+5y)+5y^2(3x-2y)+2(5y^3-3/2x^2y+7)
bài 4 thực hiện phép tính
5x(12x+7)-(3x+1)(20x-5)
Tìm giá trị nhỏ nhất của biểu thức
C=4^2+2y^2+4xy+4x+6y+17
C= ( 2x+y)^2 + 2(2x+y) + 1 + y^2 + 4y +4 + 12
C= (2x+y+1)^2 +( y+2)^2 + 12
Từ đó suy ra min C là 12 khi y = -2; x= 1/2